2,913 research outputs found

    Diffuse optical tomography to investigate the newborn brain

    Get PDF
    Over the past 15 years, functional near-infrared spectroscopy (fNIRS) has emerged as a powerful technology for studying the developing brain. Diffuse optical tomography (DOT) is an extension of fNIRS that combines hemodynamic information from dense optical sensor arrays over a wide field of view. Using image reconstruction techniques, DOT can provide images of the hemodynamic correlates to neural function that are comparable to those produced by functional magnetic resonance imaging. This review article explains the principles of DOT, and highlights the growing literature on the use of DOT in the study of healthy development of the infant brain, and the study of novel pathophysiology in infants with brain injury. Current challenges, particularly around instrumentation and image reconstruction, will be discussed, as will the future of this growing field, with particular focus on whole-brain, time-resolved DOT

    Awareness and knowledge of HPV and cervical cancer in female students: A survey (with a cautionary note)

    Get PDF
    We conducted a survey to explore levels of awareness and knowledge of human papillomavirus (HPV) and cervical cancer in 170 female students and whether mode of data collection (online vs. paper) affected the results. 27% of women named HPV as a cause of cervical cancer with online respondents more likely to do so. 75% of women had heard of HPV. More online respondents had heard of HPV than paper respondents. 127 women reported having heard of HPV, with a mean knowledge score of 2.989 (standard deviation [SD] 1.599). Online respondents scored higher (3.57, SD 1.316) than paper respondents (2.688, SD 1.591). Knowledge and awareness of HPV and its link to cervical cancer appear to have increased which may be related to the HPV vaccination programme. However, there is still a considerable number of women with little to no knowledge of HPV. Online surveys may result in an inflated estimation of awareness and knowledge

    Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Get PDF
    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces

    Development of a transparent interactive decision interrogator to facilitate the decision-making process in health care.

    Get PDF
    BACKGROUND: Decisions about the use of new technologies in health care are often based on complex economic models. Decision makers frequently make informal judgments about evidence, uncertainty, and the assumptions that underpin these models. OBJECTIVES: Transparent interactive decision interrogator (TIDI) facilitates more formal critique of decision models by decision makers such as members of appraisal committees of the National Institute for Health and Clinical Excellence in the UK. By allowing them to run advanced statistical models under different scenarios in real time, TIDI can make the decision process more efficient and transparent, while avoiding limitations on pre-prepared analysis. METHODS: TIDI, programmed in Visual Basic for applications within Excel, provides an interface for controlling all components of a decision model developed in the appropriate software (e.g., meta-analysis in WinBUGS and the decision model in R) by linking software packages using RExcel and R2WinBUGS. TIDI's graphical controls allow the user to modify assumptions and to run the decision model, and results are returned to an Excel spreadsheet. A tool displaying tornado plots helps to evaluate the influence of individual parameters on the model outcomes, and an interactive meta-analysis module allows the user to select any combination of available studies, explore the impact of bias adjustment, and view results using forest plots. We demonstrate TIDI using an example of a decision model in antenatal care. CONCLUSION: Use of TIDI during the NICE appraisal of tumor necrosis factor-alpha inhibitors (in psoriatic arthritis) successfully demonstrated its ability to facilitate critiques of the decision models by decision makers

    Interpolated sequences and critical LL-values of modular forms

    Full text link
    Recently, Zagier expressed an interpolated version of the Ap\'ery numbers for ζ(3)\zeta(3) in terms of a critical LL-value of a modular form of weight 4. We extend this evaluation in two directions. We first prove that interpolations of Zagier's six sporadic sequences are essentially critical LL-values of modular forms of weight 3. We then establish an infinite family of evaluations between interpolations of leading coefficients of Brown's cellular integrals and critical LL-values of modular forms of odd weight.Comment: 23 pages, to appear in Proceedings for the KMPB conference: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theor

    Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models

    Get PDF
    The Doyle–Fuller–Newman (DFN) framework is the most popular physics-based continuum-level description of the chemical and dynamical internal processes within operating lithium-ion-battery cells. With sufficient flexibility to model a wide range of battery designs and chemistries, the framework provides an effective balance between detail, needed to capture key microscopic mechanisms, and simplicity, needed to solve the governing equations at a relatively modest computational expense. Nevertheless, implementation requires values of numerous model parameters, whose ranges of applicability, estimation, and validation pose challenges. This article provides a critical review of the methods to measure or infer parameters for use within the isothermal DFN framework, discusses their advantages or disadvantages, and clarifies limitations attached to their practical application. Accompanying this discussion we provide a searchable database, available at www.liiondb.com, which aggregates many parameters and state functions for the standard DFN model that have been reported in the literature

    Legal framework for small autonomous agricultural robots

    Get PDF
    Legal structures may form barriers to, or enablers of, adoption of precision agriculture management with small autonomous agricultural robots. This article develops a conceptual regulatory framework for small autonomous agricultural robots, from a practical, self-contained engineering guide perspective, sufficient to get working research and commercial agricultural roboticists quickly and easily up and running within the law. The article examines the liability framework, or rather lack of it, for agricultural robotics in EU, and their transpositions to UK law, as a case study illustrating general international legal concepts and issues. It examines how the law may provide mitigating effects on the liability regime, and how contracts can be developed between agents within it to enable smooth operation. It covers other legal aspects of operation such as the use of shared communications resources and privacy in the reuse of robot-collected data. Where there are some grey areas in current law, it argues that new proposals could be developed to reform these to promote further innovation and investment in agricultural robots

    Understanding Bank-Run Contagion

    Full text link

    Robust optical delay lines via topological protection

    Get PDF
    Phenomena associated with topological properties of physical systems are naturally robust against perturbations. This robustness is exemplified by quantized conductance and edge state transport in the quantum Hall and quantum spin Hall effects. Here we show how exploiting topological properties of optical systems can be used to implement robust photonic devices. We demonstrate how quantum spin Hall Hamiltonians can be created with linear optical elements using a network of coupled resonator optical waveguides (CROW) in two dimensions. We find that key features of quantum Hall systems, including the characteristic Hofstadter butterfly and robust edge state transport, can be obtained in such systems. As a specific application, we show that the topological protection can be used to dramatically improve the performance of optical delay lines and to overcome limitations related to disorder in photonic technologies.Comment: 9 pages, 5 figures + 12 pages of supplementary informatio
    • …
    corecore