1,772 research outputs found
Gauge invariant definition of the jet quenching parameter
In the framework of Soft-Collinear Effective Theory, the jet quenching
parameter, , has been evaluated by adding the effect of Glauber gluon
interactions to the propagation of a highly-energetic collinear parton in a
medium. The result, which holds in covariant gauges, has been expressed in
terms of the expectation value of two Wilson lines stretching along the
direction of the four-momentum of the parton. In this paper, we show how that
expression can be generalized to an arbitrary gauge by the addition of
transverse Wilson lines. The transverse Wilson lines are explicitly computed by
resumming interactions of the parton with Glauber gluons that appear only in
non-covariant gauges. As an application of our result, we discuss the
contribution to coming from transverse momenta of order in a
medium that is a weakly-coupled quark-gluon plasma.Comment: 31 pages, 7 figures; journal versio
Direct photon production with effective field theory
The production of hard photons in hadronic collisions is studied using
Soft-Collinear Effective Theory (SCET). This is the first application of SCET
to a physical, observable cross section involving energetic partons in more
than two directions. A factorization formula is derived which involves a
non-trivial interplay of the angular dependence in the hard and soft functions,
both quark and gluon jet functions, and multiple partonic channels. The
relevant hard, jet and soft functions are computed to one loop and their
anomalous dimensions are determined to three loops. The final resummed
inclusive direct photon distribution is valid to next-to-next-to-leading
logarithmic order (NNLL), one order beyond previous work. The result is
improved by including non-logarithmic terms and photon isolation cuts through
matching, and compared to Tevatron data and to fixed order results at the
Tevatron and the LHC. The resummed cross section has a significantly smaller
theoretical uncertainty than the next-to-leading fixed-order result,
particularly at high transverse momentum.Comment: 42 pages, 9 figures; v2: references added, minor changes; v3: typos;
v4: typos, corrections in (16), (47), (72
An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung
Two effects, jet broadening and gluon bremsstrahlung induced by the
propagation of a highly energetic quark in dense QCD matter, are reconsidered
from effective theory point of view. We modify the standard Soft Collinear
Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed
to implement the interactions between the medium and the collinear fields. We
derive the Feynman rules for this Lagrangian and show that it is invariant
under soft and collinear gauge transformations. We find that the newly
constructed theory SCET recovers exactly the general result for the
transverse momentum broadening of jets. In the limit where the radiated gluons
are significantly less energetic than the parent quark, we obtain a jet
energy-loss kernel identical to the one discussed in the reaction operator
approach to parton propagation in matter. In the framework of SCET we
present results for the fully-differential bremsstrahlung spectrum for both the
incoherent and the Landau-Pomeranchunk-Migdal suppressed regimes beyond the
soft-gluon approximation. Gauge invariance of the physics results is
demonstrated explicitly by performing the calculations in both the light-cone
and covariant gauges. We also show how the process-dependent
medium-induced radiative corrections factorize from the jet production cross
section on the example of the quark jets considered here.Comment: 52 pages, 15 pdf figures, as published in JHE
Selective Metal Cation Capture by Soft Anionic Metal-Organic Frameworks via Drastic Single-Crystal-to-Single-Crystal Transformations
In this paper we describe a novel framework for the discovery of the topical
content of a data corpus, and the tracking of its complex structural changes
across the temporal dimension. In contrast to previous work our model does not
impose a prior on the rate at which documents are added to the corpus nor does
it adopt the Markovian assumption which overly restricts the type of changes
that the model can capture. Our key technical contribution is a framework based
on (i) discretization of time into epochs, (ii) epoch-wise topic discovery
using a hierarchical Dirichlet process-based model, and (iii) a temporal
similarity graph which allows for the modelling of complex topic changes:
emergence and disappearance, evolution, and splitting and merging. The power of
the proposed framework is demonstrated on the medical literature corpus
concerned with the autism spectrum disorder (ASD) - an increasingly important
research subject of significant social and healthcare importance. In addition
to the collected ASD literature corpus which we will make freely available, our
contributions also include two free online tools we built as aids to ASD
researchers. These can be used for semantically meaningful navigation and
searching, as well as knowledge discovery from this large and rapidly growing
corpus of literature.Comment: In Proc. Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD), 201
A Web-Based Flexible Communication System in Radiology
A web-based system for rapid multidirectional communication has been created in the Radiology department at San Francisco General Hospital. The system allows messaging among radiology attendings, residents, and technologists, as well as other members of the hospital community, such as Emergency Department physicians and nurses. Instead of being tied to a particular workflow, this system provides a flexible communication infrastructure which can be easily adapted for different functions and user roles. The system has so far been configured to successfully support the standard “wet reading” workflow, to support marking and tracking of critical results, as well as multiple educational and quality improvement workflows. In the 19 months of operation, the system has gained over 1,800 users (virtually all providers at our institution), it has been accessed by radiologists over 39,000 times and by non-radiologists over 34,000 times. It has become an integral part of the radiology department operations and non-radiology clinical workflows. Unlike most existing softwares, our system is not a task-specific application, but a multipurpose communication system. It is able to effectively accommodate multiple workflows and user roles through configuration (without additional programming). This flexibility has helped this system to be rapidly and widely adopted within our enterprise. The extended reach of the system enables improved monitoring and documentation of workflows, helping with management decision making, and quality assurance. We report a successful radiology communication system based on the principles of flexibility and inclusiveness of users inside and outside the radiology department
Electroweak Gauge-Boson Production at Small q_T: Infrared Safety from the Collinear Anomaly
Using methods from effective field theory, we develop a novel, systematic
framework for the calculation of the cross sections for electroweak gauge-boson
production at small and very small transverse momentum q_T, in which large
logarithms of the scale ratio M_V/q_T are resummed to all orders. These cross
sections receive logarithmically enhanced corrections from two sources: the
running of the hard matching coefficient and the collinear factorization
anomaly. The anomaly leads to the dynamical generation of a non-perturbative
scale q_* ~ M_V e^{-const/\alpha_s(M_V)}, which protects the processes from
receiving large long-distance hadronic contributions. Expanding the cross
sections in either \alpha_s or q_T generates strongly divergent series, which
must be resummed. As a by-product, we obtain an explicit non-perturbative
expression for the intercept of the cross sections at q_T=0, including the
normalization and first-order \alpha_s(q_*) correction. We perform a detailed
numerical comparison of our predictions with the available data on the
transverse-momentum distribution in Z-boson production at the Tevatron and LHC.Comment: 34 pages, 9 figure
Lysine-91 of the tetraheme c-type cytochrome CymA is essential for quinone interaction and arsenate respiration in Shewanella sp. strain ANA-3
The tetraheme c-type cytochrome, CymA, is essential for arsenate respiratory reduction in Shewanella sp. ANA-3, a model arsenate reducer. CymA is predicted to mediate electron transfer from quinols to the arsenate respiratory reductase (ArrAB). Here, we present biochemical and physiological evidence that CymA interacts with menaquinol (MQH2) substrates. Fluorescence quench titration with the MQH2 analog, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), was used to demonstrate quinol binding of E. coli cytoplasmic membranes enriched with various forms of CymA. Wild-type CymA bound HOQNO with a Kd of 0.1–1 μM. It was also shown that the redox active MQH2 analog, 2,3-dimethoxy-1,4-naphthoquinone (DMNH2), could reduce CymA in cytoplasmic membrane preparations. Based on a CymA homology model made from the NrfH tetraheme cytochrome structure, it was predicted that Lys91 would be involved in CymA-quinol interactions. CymA with a K91Q substitution showed little interaction with HOQNO. In addition, DMNH2-dependent reduction of CymA-K91Q was diminished by 45% compared to wild-type CymA. A ΔcymA ANA-3 strain containing a plasmid copy of cymA-K91Q failed to grow with arsenate as an electron acceptor. These results suggest that Lys91 is physiologically important for arsenate respiration and support the hypothesis that CymA interacts with menaquinol resulting in the reduction of the cytochrome
Explaining the t tbar forward-backward asymmetry without dijet or flavor anomalies
We consider new physics explanations of the anomaly in the top quark
forward-backward asymmetry measured at the Tevatron, in the context of flavor
conserving models. The recently measured LHC dijet distributions strongly
constrain many otherwise viable models. A new scalar particle in the
antitriplet representation of flavor and color can fit the t tbar asymmetry and
cross section data at the Tevatron and avoid both low- and high-energy bounds
from flavor physics and the LHC. An s-channel resonance in uc to uc scattering
at the LHC is predicted to be not far from the current sensitivity. This model
also predicts rich top quark physics for the early LHC from decays of the new
scalar particles. Single production gives t tbar j signatures with high
transverse momentum jet, pair production leads to t tbar j j and 4 jet final
states.Comment: 7 pages, 6 figures; v2: notation clarified, references adde
Long term time variability of cosmic rays and possible relevance to the development of life on Earth
An analysis is made of the manner in which the cosmic ray intensity at Earth
has varied over its existence and its possible relevance to both the origin and
the evolution of life. Much of the analysis relates to the 'high energy' cosmic
rays () and their variability due to the changing
proximity of the solar system to supernova remnants which are generally
believed to be responsible for most cosmic rays up to PeV energies. It is
pointed out that, on a statistical basis, there will have been considerable
variations in the likely 100 My between the Earth's biosphere reaching
reasonable stability and the onset of very elementary life. Interestingly,
there is the increasingly strong possibility that PeV cosmic rays are
responsible for the initiation of terrestrial lightning strokes and the
possibility arises of considerable increases in the frequency of lightnings and
thereby the formation of some of the complex molecules which are the 'building
blocks of life'. Attention is also given to the well known generation of the
oxides of nitrogen by lightning strokes which are poisonous to animal life but
helpful to plant growth; here, too, the violent swings of cosmic ray
intensities may have had relevance to evolutionary changes. A particular
variant of the cosmic ray acceleration model, put forward by us, predicts an
increase in lightning rate in the past and this has been sought in Korean
historical records. Finally, the time dependence of the overall cosmic ray
intensity, which manifests itself mainly at sub-10 GeV energies, has been
examined. The relevance of cosmic rays to the 'global electrical circuit'
points to the importance of this concept.Comment: 18 pages, 5 figures, accepted by 'Surveys in Geophysics
Baryon Washout, Electroweak Phase Transition, and Perturbation Theory
We analyze the conventional perturbative treatment of sphaleron-induced
baryon number washout relevant for electroweak baryogenesis and show that it is
not gauge-independent due to the failure of consistently implementing the
Nielsen identities order-by-order in perturbation theory. We provide a
gauge-independent criterion for baryon number preservation in place of the
conventional (gauge-dependent) criterion needed for successful electroweak
baryogenesis. We also review the arguments leading to the preservation
criterion and analyze several sources of theoretical uncertainties in obtaining
a numerical bound. In various beyond the standard model scenarios, a realistic
perturbative treatment will likely require knowledge of the complete two-loop
finite temperature effective potential and the one-loop sphaleron rate.Comment: 25 pages, 9 figures; v2 minor typos correcte
- …