65 research outputs found

    Impact of impaired fractional flow reserve after coronary interventions on outcomes: a systematic review and meta-analysis

    Full text link
    BACKGROUND: FFR is routinely used to guide percutaneous coronary interventions (PCI). Visual assessment of the angiographic result after PCI has limited efficacy. Even when the angiographic result seems satisfactory FFR after a PCI might be useful for identifying patients with a suboptimal interventional result and higher risk for poor clinical outcome who might benefit from additional procedures. The aim of this meta-analysis was to investigate available data of studies that examined clinical outcomes of patients with impaired vs. satisfactory fractional flow reserve (FFR) after percutaneous coronary interventions (PCI). METHODS: This meta-analysis was carried out according to the Cochrane Handbook for Systematic Reviews. The Mantel-Haenszel method using the fixed-effect meta-analysis model was used for combining the results. Studies were identified by searching the literature through mid-January, 2016, using the following search terms: fractional flow reserve, coronary circulation, after, percutaneous coronary intervention, balloon angioplasty, stent implantation, and stenting. Primary endpoint was the rate of major adverse cardiac events (MACE). Secondary endpoints included rates of death, myocardial infarction (MI), repeated revascularisation. RESULTS: Eight relevant studies were found including a total of 1337 patients. Of those, 492 (36.8 %) had an impaired FFR after PCI, and 853 (63.2 %) had a satisfactory FFR after PCI. Odds ratios indicated that a low FFR following PCI was associated with an impaired outcome: major adverse cardiac events (MACE, OR: 4.95, 95 % confidence interval [CI]: 3.39–7.22, p <0.001); death (OR: 3.23, 95 % CI: 1.19–8.76, p = 0.022); myocardial infarction (OR: 13.83, 95 % CI: 4.75–40.24, p <0.0001) and repeated revascularisation (OR: 4.42, 95 % CI: 2.73–7.15, p <0.0001). CONCLUSIONS: Compared to a satisfactory FFR, a persistently low FFR following PCI is associated with a worse clinical outcome. Prospective studies are needed to identify underlying causes, determine an optimal threshold for post-PCI FFR, and clarify whether simple additional procedures can influence the post-PCI FFR and clinical outcome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12872-016-0355-7) contains supplementary material, which is available to authorized users

    Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters

    No full text
    © 2016 The Authors. We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE-) inferred masses in a sample of 19 galaxy clusters with median redshift z ≃ 0.42 selected from the South Pole Telescope SPT-SZ survey. These clusters are observed by the Megacam on the Magellan Clay Telescope though gri filters. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian ≃ 0.9 (low-z background) and zmedian ≃ 1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3σ and 1.3σ for the low- and high-z backgrounds, respectively. We fit Navarro, Frenk and White models simultaneously to all observed magnification bias profiles to estimate the multiplicative factor η that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in ? resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting ? for the combined background populations with 1σ uncertainties is 0.83 ± 0.24(stat) ± 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We use our best-fitting η to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. This work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys
    corecore