10 research outputs found

    First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications

    Get PDF
    A pilot palaeomagnetic study was conducted on the recently dated with in situ SHRIMP U-Pb method at 1134 ± 9 Ma (U-Pb, zircon and baddeleyite) Bunger Hills dykes of the Mawson Craton (East Antarctica). Of the six dykes sampled, three revealed meaningful results providing the first well-dated Mesoproterozoic palaeopole at 40.5°S, 150.1°E (A95 = 20°) for the Mawson Craton. Discordance between this new pole and two roughly coeval poles from Dronning Maud Land and Coats Land (East Antarctica) demonstrates that these two terranes were not rigidly connected to the Mawson Craton ca. 1134 Ma. Comparison between the new pole and that of the broadly coeval Lakeview dolerite from the North Australian Craton supports the putative ~40° late Neoproterozoic relative rotation between the North Australian Craton and the combined South and West Australian cratons. A mean ca. 1134 Ma pole for the Proto-Australia Craton is calculated by combining our new pole and that of the Lakeview dolerite after restoring the 40° intracontinental rotation. A comparison of this mean pole with the roughly coeval Abitibi dykes pole from Laurentia confirms that the SWEAT reconstruction of Australia and Laurentia was not viable for ca. 1134 Ma

    Monazite geochronology and geochemistry of meta-sediments in the Narryer Gneiss Complex, Western Australia: Constraints on the tectonothermal history and provenance

    No full text
    Mt. Narryer and Jack Hills meta-sedimentary rocks in the Narryer Gneiss Complex of the Yilgarn Craton, Western Australia are of particular importance because they yield Hadean detrital zircons. To better understand the tectonothermal history and provenance of these ancient sediments, we have integrated backscattered scanning electron images, in situ U-Pb isotopic and geochemical data for monazites from the meta-sediments. The data indicate multiple periods of metamorphic monazite growth in the Mt. Narryer meta-sediments during tectonothermal events, including metamorphism at ~3.3-3.2 and 2.7-2.6 Ga. These results set a new minimum age of 3.2 Ga for deposition of the Mt. Narryer sediments, previously constrained between 3.28 and ~2.7 Ga. Despite the significant metamorphic monazite growth, a relatively high proportion of detrital monazite survives in a Fe- and Mn-rich sample. This is likely because the high Fe and Mn bulk composition resulted in the efficient shielding of early formed monazite by garnet. In the Jack Hills meta-sediments, metamorphic monazite growth was minor, suggesting the absence of high-grade metamorphism in the sequence. The detrital monazites provide evidence for the derivation of Mt. Narryer sediments from ca. 3.6 and 3.3 Ga granites, likely corresponding to Meeberrie and Dugel granitic gneisses in the Narryer Gneiss Complex. No monazites older than 3.65 Ga have been identified, implying either that the source rocks of >3.65 Ga detrital zircons in the sediments contained little monazite, or that >3.65 Ga detrital minerals had experienced significant metamorphic events or prolonged sedimentary recycling, resulting in the complete dissolution or recrystallization of monazite. © 2010 Springer-Verlag

    Insights into the Hadean Earth from experimental studies of zircon

    No full text

    Immunomodulatory Functions of Cancer Stem Cells

    No full text

    The use of microRNA by human viruses: lessons from NK cells and HCMV infection

    No full text

    A New Chapter for Mesenchymal Stem Cells: Decellularized Extracellular Matrices

    No full text
    corecore