530 research outputs found
On the Heterotic World-sheet Instanton Superpotential and its individual Contributions
For supersymmetric heterotic string compactifications on a Calabi-Yau
threefold endowed with a vector bundle the world-sheet superpotential
is a sum of contributions from isolated rational curves \C in ; the
individual contribution is given by an exponential in the K\"ahler class of the
curve times a prefactor given essentially by the Pfaffian which depends on the
moduli of and the complex structure moduli of . Solutions of (or
even of ) can arise either by nontrivial cancellations between the
individual terms in the summation over all contributing curves or because each
of these terms is zero already individually. Concerning the latter case
conditions on the moduli making a single Pfaffian vanish (for special moduli
values) have been investigated. However, even if corresponding moduli -
fulfilling these constraints - for the individual contribution of one curve are
known it is not at all clear whether {\em one} choice of moduli exists which
fulfills the corresponding constraints {\em for all contributing curves
simultaneously}. Clearly this will in general happen only if the conditions on
the 'individual zeroes' had already a conceptual origin which allows them to
fit together consistently. We show that this happens for a class of cases. In
the special case of spectral cover bundles we show that a relevant solution set
has an interesting location in moduli space and is related to transitions which
change the generation number.Comment: 47 page
Perspectives on Pfaffians of Heterotic World-sheet Instantons
To fix the bundle moduli of a heterotic compactification one has to
understand the Pfaffian one-loop prefactor of the classical instanton
contribution. For compactifications on elliptically fibered Calabi-Yau spaces X
this can be made explicit for spectral bundles and world-sheet instantons
supported on rational base curves b: one can express the Pfaffian in a closed
algebraic form as a polynomial, or it may be understood as a theta-function
expression. We elucidate the connection between these two points of view via
the respective perception of the relevant spectral curve, related to its
extrinsic geometry in the ambient space (the elliptic surface in X over b) or
to its intrinsic geometry as abstract Riemann surface. We identify, within a
conceptual description, general vanishing loci of the Pfaffian, and derive
bounds on the vanishing order, relevant to solutions of W=dW=0.Comment: 40 pages; minor changes, discussion section 1.1 adde
S-Track Stabilization of Heterotic de Sitter Vacua
We present a new mechanism, the S-Track, to stabilize the volume modulus S in
heterotic M-theory flux compactifications along with the orbifold-size T
besides complex structure and vector bundle moduli stabilization. The key
dynamical ingredient which makes the volume modulus stabilization possible, is
M5-instantons arising from M5-branes wrapping the whole Calabi-Yau slice. These
are natural in heterotic M-theory where the warping shrinks the Calabi-Yau
volume along S^1/Z_2. Combined with H-flux, open M2-instantons and hidden
sector gaugino condensation it leads to a superpotential W which stabilizes S
similar like a racetrack but without the need for multi gaugino condensation.
Moreover, W contains two competing non-perturbative effects which stabilize T.
We analyze the potential and superpotentials to show that it leads to heterotic
de Sitter vacua with broken supersymmetry through non-vanishing F-terms.Comment: 16 pages, 2 figures; final PRD versio
Superpotentials for M-theory on a G_2 holonomy manifold and Triality symmetry
For -theory on the holonomy manifold given by the cone on {\bf
S^3}\x {\bf S^3} we consider the superpotential generated by membrane
instantons and study its transformations properties, especially under monodromy
transformations and triality symmetry. We find that the latter symmetry is,
essentially, even a symmetry of the superpotential. As in Seiberg/Witten
theory, where a flat bundle given by the periods of an universal elliptic curve
over the -plane occurs, here a flat bundle related to the Heisenberg group
appears and the relevant universal object over the moduli space is related to
hyperbolic geometry.Comment: 58 pages, latex; references adde
Constraining the Kahler Moduli in the Heterotic Standard Model
Phenomenological implications of the volume of the Calabi-Yau threefolds on
the hidden and observable M-theory boundaries, together with slope stability of
their corresponding vector bundles, constrain the set of Kaehler moduli which
give rise to realistic compactifications of the strongly coupled heterotic
string. When vector bundles are constructed using extensions, we provide simple
rules to determine lower and upper bounds to the region of the Kaehler moduli
space where such compactifications can exist. We show how small these regions
can be, working out in full detail the case of the recently proposed Heterotic
Standard Model. More explicitely, we exhibit Kaehler classes in these regions
for which the visible vector bundle is stable. On the other hand, there is no
polarization for which the hidden bundle is stable.Comment: 28 pages, harvmac. Exposition improved, references and one figure
added, minor correction
String-String triality for d=4, Z_2 orbifolds
We investigate the perturbative and non-perturbative correspondence of a
class of four dimensional dual string constructions with N=4 and N=2
supersymmetry, obtained as Z_2 or Z_2 x Z_2 orbifolds of the type II, heterotic
and type I string. In particular, we discuss the heterotic and type I dual of
all the symmetric Z_2 x Z_2 orbifolds of the type II string, classified in
hep-th/9901123. .Comment: latex, 50 pages, figures, final published versio
World-sheet Instanton Superpotentials in Heterotic String theory and their Moduli Dependence
To understand in detail the contribution of a world-sheet instanton to the
superpotential in a heterotic string compactification, one has to understand
the moduli dependence (bundle and complex structure moduli) of the one-loop
determinants from the fluctuations, which accompany the classical exponential
contribution (involving K\"ahler moduli) when evaluating the world-volume
partition function. Here we use techniques to describe geometrically these
Pfaffians for spectral bundles over rational base curves in elliptically
fibered Calabi-Yau threefolds, and provide a (partially exhaustive) list of
cases involving {\em factorising} (or vanishing) superpotential. This gives a
conceptual explanation and generalisation of the few previously known cases
which were obtained just experimentally by a numerical computation.Comment: 57 pages; minor changes, discussion section 1.3 adde
Vector Bundle Moduli and Small Instanton Transitions
We give the general presciption for calculating the moduli of irreducible,
stable SU(n) holomorphic vector bundles with positive spectral covers over
elliptically fibered Calabi-Yau threefolds. Explicit results are presented for
Hirzebruch base surfaces B=F_r. The transition moduli that are produced by
chirality changing small instanton phase transitions are defined and
specifically enumerated. The origin of these moduli, as the deformations of the
spectral cover restricted to the ``lift'' of the horizontal curve of the
M5-brane, is discussed. We present an alternative description of the transition
moduli as the sections of rank n holomorphic vector bundles over the M5-brane
curve and give explicit examples. Vector bundle moduli appear as gauge singlet
scalar fields in the effective low-energy actions of heterotic superstrings and
heterotic M-theory.Comment: 52 pages, LATEX, corrected typo
MQCD, ('Barely') G_2 Manifolds and (Orientifold of) a Compact Calabi-Yau
We begin with a discussion on two apparently disconnected topics - one
related to nonperturbative superpotential generated from wrapping an M2-brane
around a supersymmetric three cycle embedded in a G_2-manifold evaluated by the
path-integral inside a path-integral approach of [1], and the other centered
around the compact Calabi-Yau CY_3(3,243) expressed as a blow-up of a degree-24
Fermat hypersurface in WCP^4[1,1,2,8,12]. For the former, we compare the
results with the ones of Witten on heterotic world-sheet instantons [2]. The
subtopics covered in the latter include an N=1 triality between Heterotic, M-
and F-theories, evaluation of RP^2-instanton superpotential, Picard-Fuchs
equation for the mirror Landau-Ginsburg model corresponding to CY_3(3,243),
D=11 supergravity corresponding to M-theory compactified on a `barely' G_2
manifold involving CY_3(3,243) and a conjecture related to the action of
antiholomorphic involution on period integrals. We then show an indirect
connection between the two topics by showing a connection between each one of
the two and Witten's MQCD [3]. As an aside, we show that in the limit of
vanishing "\zeta", a complex constant that appears in the Riemann surfaces
relevant to definining the boundary conditions for the domain wall in MQCD, the
infinite series of [4] used to represent a suitable embedding of a
supersymmetric 3-cycle in a G_2-mannifold, can be summed.Comment: 37 pages, LaTex; PARTLY based on talks given at ``Seventh Workshop on
QCD" [session on "Strings, Branes and (De-)Construction"], Jan 6-10, 2003, La
Cittadelle, Villefranche-sur-Mer, France; Fourth Workshop on ``Gauge Fields
and Strings", Feb 25-Mar 1, 2003, Jena, Germany; ``XII Oporto Meeting on
Geometry, Topology and Strings", July 17-20, 2003, Oporto, Portugal; "SQS03"
- International Workshop on "Supersymmetries and Quantum Symmetries', July
24-29, 2003, JINR, Dubna, Russia; poster presented at ``XIV International
Congress on Mathematical Physics", July 28-Aug 2, 2003, Lisbon, Portuga
Assessing Drivers’ Vigilance State During Monotonous Driving
The differential effects of three hours of monotonous daytime driving on subjective (sleepiness, inattention, monotony), performance (choice reaction time), and physiological (EEG alpha power, P300-amplitude, heart rate) vigilance measures were examined. A linear degradation of drivers’ subjective state, mean long reaction times (as opposed to short ones), P300-amplitude and parietal alpha power with time spent on the highway was identified. An improvement of the subjective measures towards the end of the driving task was not accompanied by any improvement in performance or physiological measures. This dissociation of self-assessment and objective vigilance measures has important implications for the design of modern driver assistant systems that aim to adapt to the driver’s state
- …