6 research outputs found
Investigation on centrifugal pump performance degradation under air-water inlet two-phase flow conditions
In order to study the flow characteristics of centrifugal pumps when transporting the gas-liquid mixture, water and air were chosen as the working medium. Both numerical simulation and experimental tests were conducted on a centrifugal pump under different conditions of inlet air volume fraction (IAVF). The calculation used URANS k-epsilon turbulence model combined with the Euler-Euler inhomogeneous two-phase model. The air distribution and velocity streamline inside the impeller were obtained to discuss the flow characteristics of the pump. The results shows that air concentration is high at the inlet pressure side of the blade, where the vortex will exist, indicating that the gas concentration have a great relationship with the vortex aggregation in the impeller passages. In the experimental works, pump performance were measured at different IAVF and compared with numerical results. Contributions to the centrifugal pump performance degradations were analyzed under different air-water inlet flow condition such as IAVF, bubble size, inlet pressure. Results show that pump performance degradation is more pronounced for low flow rates compared to high flow rates. Finally, pressure pulsation and vibration experiments of the pump model under different IAVF were also conducted. Inlet and outlet transient pressure signals under four IAVF were investigated and pressure pulsation frequency of the monitors is near the blade passing frequency at different IAVF, and when IAVF increased, the lower frequency signal are more and more obvious. Vibration signals at five measuring points were also obtained under different IAVF for various flow rates
Experimental and numerical studies on flow characteristics of centrifugal pump under air-water inflow
A two-phase liquid pumping test ring is built to study the flow induced characteristics of centrifugal pump under the air-water flow working condition. Pump performances are measured under different flow rates and different inlet air void fraction (a). Pressure pulsation signal spectrums and their probability density maps are also recorded. The calculations, using URANS k-epsilon turbulence model combined with the Euler-Euler inhomogeneous two-phase model, are also performed to obtain inner flow structure inside the impeller and volute channels under different air-water conditions in order to understand the pump characteristic evolutions. The results show that the performance of centrifugal pump is more sensitive to air inlet injection at low flow rates. The maximum air void fraction of model pump could reach 10% when the pump operates at the highest efficiency point, and the performance drops sharply when the air void fraction is more than 8%. The dominant frequency of pump outlet pressure pulsation is still at the blade passing frequency even under two-phase condition. Frequency amplitude increases with the increase of a. The greater the a, the more low frequency appears in broadband characteristics. With the increase of a, the probability density amplitude of pressure pulsation decreases gradually, and its span becomes gradually wider as well. Comparisons between numerical local results, experimental unsteady pressure can explain part of the phenomena that are found in the present paper
Experimental Investigations on the Inner Flow Behavior of Centrifugal Pumps under Inlet Air-Water Two-Phase Conditions
Centrifugal pumps are widely used and are known to be sensitive to inlet air-water two-phase flow conditions. The pump performance degradation mainly depends on the changes in the two-phase flow behavior inside the pump. In the present paper, experimental overall pump performance tests were performed for two different rotational speeds and several inlet air void fractions (αi) up to pump shut-off condition. Visualizations were also performed on the flow patterns of a whole impeller passage and the volute tongue area to physically understand pump performance degradation. The results showed that liquid flow modification does not follow head modification as described by affinity laws, which are only valid for homogeneous bubbly flow regimes. Three-dimensional effects were more pronounced when inlet void fraction increased up to 3%. Bubbly flow with low mean velocities were observed close to the volute tongue for all αi, and returned back to the impeller blade passages. The starting point of pump break down was related to a strong inward reverse flow that occurred in the vicinity of the shroud gap between the impeller and volute tongue area
Experimental Investigations on the Inner Flow Behavior of Centrifugal Pumps under Inlet Air-Water Two-Phase Conditions
International audienceCentrifugal pumps are widely used and are known to be sensitive to inlet air-water two-phase flow conditions. The pump performance degradation mainly depends on the changes in the two-phase flow behavior inside the pump. In the present paper, experimental overall pump performance tests were performed for two different rotational speeds and several inlet air void fractions (αi) up to pump shut-off condition. Visualizations were also performed on the flow patterns of a whole impeller passage and the volute tongue area to physically understand pump performance degradation. The results showed that liquid flow modification does not follow head modification as described by affinity laws, which are only valid for homogeneous bubbly flow regimes. Three-dimensional effects were more pronounced when inlet void fraction increased up to 3%. Bubbly flow with low mean velocities were observed close to the volute tongue for all αi, and returned back to the impeller blade passages. The starting point of pump break down was related to a strong inward reverse flow that occurred in the vicinity of the shroud gap between the impeller and volute tongue area
Experimental Study on Flow Behavior of Unshrouded Impeller Centrifugal Pumps under Inlet Air Entrainment Condition
Results on overall pump head and efficiency performance, pressure pulsation and high speed camera visualization of flow patterns behavior are presented for different inlet air-water void fractions at a given rotational speed. With the increase of inlet void fractions and decrease of the flow rates, the size of bubbles increase and tend to agglomerate in specific impeller passage locations along the blade chord. The starting point of pump breakdown is related to a strong inward reverse flow occurring in a specific location near the shroud gap of the impeller and volute tongue region. Using a constant air void fraction value of 2%, pressure pulsation frequency results are analyzed in relation with local flow mixture patterns and flow rate modification