2,169 research outputs found

    A New Algorithm for Computing the Actions of Trigonometric and Hyperbolic Matrix Functions

    Full text link
    A new algorithm is derived for computing the actions f(tA)Bf(tA)B and f(tA1/2)Bf(tA^{1/2})B, where ff is cosine, sinc, sine, hyperbolic cosine, hyperbolic sinc, or hyperbolic sine function. AA is an n×nn\times n matrix and BB is n×n0n\times n_0 with n0nn_0 \ll n. A1/2A^{1/2} denotes any matrix square root of AA and it is never required to be computed. The algorithm offers six independent output options given tt, AA, BB, and a tolerance. For each option, actions of a pair of trigonometric or hyperbolic matrix functions are simultaneously computed. The algorithm scales the matrix AA down by a positive integer ss, approximates f(s1tA)Bf(s^{-1}tA)B by a truncated Taylor series, and finally uses the recurrences of the Chebyshev polynomials of the first and second kind to recover f(tA)Bf(tA)B. The selection of the scaling parameter and the degree of Taylor polynomial are based on a forward error analysis and a sequence of the form Ak1/k\|A^k\|^{1/k} in such a way the overall computational cost of the algorithm is optimized. Shifting is used where applicable as a preprocessing step to reduce the scaling parameter. The algorithm works for any matrix AA and its computational cost is dominated by the formation of products of AA with n×n0n\times n_0 matrices that could take advantage of the implementation of level-3 BLAS. Our numerical experiments show that the new algorithm behaves in a forward stable fashion and in most problems outperforms the existing algorithms in terms of CPU time, computational cost, and accuracy.Comment: 4 figures, 16 page

    Near field characterization of plasmonic nanostructures with electron energy loss spectroscopy

    Get PDF
    Electron energy loss spectroscopy (EELS) in combination with scanning transmission electron microscopy (STEM) was used to characterize the near field distribution of plasmonic nanostructures. The results were compared to optical experiments as well as numerical simulations. This work focuses on the near field properties of split-ring resonators (SRRs), which are one of the most prominent examples of metamaterials. The main results of this thesis are: (i) Proof of Babinet's principle in the near-infrared and visible regime, (ii) visualization of bright and dark modes in coupled nanoparticles, and (iii) a three dimensional analysis of the plasmonic near field of an individual SRR

    Observation of Lasing Mediated by Collective Atomic Recoil

    Full text link
    We observe the buildup of a frequency-shifted reverse light field in a unidirectionally pumped high-QQ optical ring cavity serving as a dipole trap for cold atoms. This effect is enhanced and a steady state is reached, if via an optical molasses an additional friction force is applied to the atoms. We observe the displacement of the atoms accelerated by momentum transfer in the backscattering process and interpret our observations in terms of the collective atomic recoil laser. Numerical simulations are in good agreement with the experimental results.Comment: 4 pages, 3 figure

    Phase-sensitive detection of Bragg scattering at 1D optical lattices

    Full text link
    We report on the observation of Bragg scattering at 1D atomic lattices. Cold atoms are confined by optical dipole forces at the antinodes of a standing wave generated by the two counter-propagating modes of a laser-driven high-finesse ring cavity. By heterodyning the Bragg-scattered light with a reference beam, we obtain detailed information on phase shifts imparted by the Bragg scattering process. Being deep in the Lamb-Dicke regime, the scattered light is not broadened by the motion of individual atoms. In contrast, we have detected signatures of global translatory motion of the atomic grating.Comment: 4 pages, 4 figure

    Multiple Reflections and Diffuse Scattering in Bragg Scattering at Optical Lattices

    Full text link
    We study Bragg scattering at 1D atomic lattices. Cold atoms are confined by optical dipole forces at the antinodes of a standing wave generated inside a laser-driven cavity. The atoms arrange themselves into an array of lens-shaped layers located at the antinodes of the standing wave. Light incident on this array at a well-defined angle is partially Bragg-reflected. We measure reflectivities as high as 30%. In contrast to a previous experiment devoted to the thin grating limit [S. Slama, et al., Phys. Rev. Lett. 94, 193901 (2005)] we now investigate the thick grating limit characterized by multiple reflections of the light beam between the atomic layers. In principle multiple reflections give rise to a photonic stop band, which manifests itself in the Bragg diffraction spectra as asymmetries and minima due to destructive interference between different reflection paths. We show that close to resonance however disorder favors diffuse scattering, hinders coherent multiple scattering and impedes the characteristic suppression of spontaneous emission inside a photonic band gap

    Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing

    Get PDF
    Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process
    corecore