2,169 research outputs found
A New Algorithm for Computing the Actions of Trigonometric and Hyperbolic Matrix Functions
A new algorithm is derived for computing the actions and
, where is cosine, sinc, sine, hyperbolic cosine, hyperbolic
sinc, or hyperbolic sine function. is an matrix and is
with . denotes any matrix square root of
and it is never required to be computed. The algorithm offers six independent
output options given , , , and a tolerance. For each option, actions
of a pair of trigonometric or hyperbolic matrix functions are simultaneously
computed. The algorithm scales the matrix down by a positive integer ,
approximates by a truncated Taylor series, and finally uses the
recurrences of the Chebyshev polynomials of the first and second kind to
recover . The selection of the scaling parameter and the degree of
Taylor polynomial are based on a forward error analysis and a sequence of the
form in such a way the overall computational cost of the
algorithm is optimized. Shifting is used where applicable as a preprocessing
step to reduce the scaling parameter. The algorithm works for any matrix
and its computational cost is dominated by the formation of products of
with matrices that could take advantage of the implementation of
level-3 BLAS. Our numerical experiments show that the new algorithm behaves in
a forward stable fashion and in most problems outperforms the existing
algorithms in terms of CPU time, computational cost, and accuracy.Comment: 4 figures, 16 page
Near field characterization of plasmonic nanostructures with electron energy loss spectroscopy
Electron energy loss spectroscopy (EELS) in combination with scanning transmission electron microscopy (STEM) was used to characterize the near field distribution of plasmonic nanostructures. The results were compared to optical experiments as well as numerical simulations. This work focuses on the near field properties of split-ring resonators (SRRs), which are one of the most prominent examples of metamaterials. The main results of this thesis are: (i) Proof of Babinet's principle in the near-infrared and visible regime, (ii) visualization of bright and dark modes in coupled nanoparticles, and (iii) a three dimensional analysis of the plasmonic near field of an individual SRR
Observation of Lasing Mediated by Collective Atomic Recoil
We observe the buildup of a frequency-shifted reverse light field in a
unidirectionally pumped high- optical ring cavity serving as a dipole trap
for cold atoms. This effect is enhanced and a steady state is reached, if via
an optical molasses an additional friction force is applied to the atoms. We
observe the displacement of the atoms accelerated by momentum transfer in the
backscattering process and interpret our observations in terms of the
collective atomic recoil laser. Numerical simulations are in good agreement
with the experimental results.Comment: 4 pages, 3 figure
Phase-sensitive detection of Bragg scattering at 1D optical lattices
We report on the observation of Bragg scattering at 1D atomic lattices. Cold
atoms are confined by optical dipole forces at the antinodes of a standing wave
generated by the two counter-propagating modes of a laser-driven high-finesse
ring cavity. By heterodyning the Bragg-scattered light with a reference beam,
we obtain detailed information on phase shifts imparted by the Bragg scattering
process. Being deep in the Lamb-Dicke regime, the scattered light is not
broadened by the motion of individual atoms. In contrast, we have detected
signatures of global translatory motion of the atomic grating.Comment: 4 pages, 4 figure
Multiple Reflections and Diffuse Scattering in Bragg Scattering at Optical Lattices
We study Bragg scattering at 1D atomic lattices. Cold atoms are confined by
optical dipole forces at the antinodes of a standing wave generated inside a
laser-driven cavity. The atoms arrange themselves into an array of lens-shaped
layers located at the antinodes of the standing wave. Light incident on this
array at a well-defined angle is partially Bragg-reflected. We measure
reflectivities as high as 30%. In contrast to a previous experiment devoted to
the thin grating limit [S. Slama, et al., Phys. Rev. Lett. 94, 193901 (2005)]
we now investigate the thick grating limit characterized by multiple
reflections of the light beam between the atomic layers. In principle multiple
reflections give rise to a photonic stop band, which manifests itself in the
Bragg diffraction spectra as asymmetries and minima due to destructive
interference between different reflection paths. We show that close to
resonance however disorder favors diffuse scattering, hinders coherent multiple
scattering and impedes the characteristic suppression of spontaneous emission
inside a photonic band gap
Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing
Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process
- …