19 research outputs found
Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance
Pectin is one of the main components of the plant cell wall that functions as the primary barrier against pathogens. Among the extracellular pectinolytic enzymes, pectin methylesterase (PME) demethylesterifies pectin, which is secreted into the cell wall in a highly methylesterified form. Here, we isolated and functionally characterized the pepper (Capsicum annuum L.) gene CaPMEI1, which encodes a pectin methylesterase inhibitor protein (PMEI), in pepper leaves infected by Xanthomonascampestris pv. vesicatoria (Xcv). CaPMEI1 transcripts are localized in the xylem of vascular bundles in leaf tissues, and pathogens and abiotic stresses can induce differential expression of this gene. Purified recombinant CaPMEI1 protein not only inhibits PME, but also exhibits antifungal activity against some plant pathogenic fungi. Virus-induced gene silencing of CaPMEI1 in pepper confers enhanced susceptibility to Xcv, accompanied by suppressed expression of some defense-related genes. Transgenic ArabidopsisCaPMEI1-overexpression lines exhibit enhanced resistance to Pseudomonas syringae pv. tomato, mannitol and methyl viologen, but not to the biotrophic pathogen Hyaloperonospora parasitica. Together, these results suggest that CaPMEI1, an antifungal protein, may be involved in basal disease resistance, as well as in drought and oxidative stress tolerance in plants
Brittle fracture and plastic creep of the completely decomposed granite presented in CT
Completely decomposed granite (CDG) with different structures shows different patterns in deformation and failure as brittle fracture or as plastic creep in triaxial test. It is necessary to monitor and to compare the fabric changes due to stress in real time during test. By means of the computerized tomography (CT) technique for monitoring deformation and failure of soils in real time without suspending the mechanical test and disturbing samples, a newly designed triaxial test machine was used to test CDG from Hong Kong in a procedure of saturation, consolidation and undrained condition. It was found that CT data (images and values) depicts the failure patterns as brittle fracture or as plastic creep at 3-D in real time. The results were concordant with stress–strain curves and observation of the appearance of samples before and after tests
Facile Gram-Scale Synthesis of Co3O4 Nanocrystal from Spent Lithium Ion Batteries and Its Electrocatalytic Application toward Oxygen Evolution Reaction
In this study, we demonstrate a new approach to easily prepare spinel Co3O4 nanoparticles (s-Co3O4 NPs) in the gram-scale from the cathode of spent lithium ion batteries (SLIBs) by the alkali leaching of hexaamminecobalt(III) complex ions. As-obtained intermediate and final products were characterized with powder X-ray diffraction (PXRD), Ultraviolet-Visible (UV–Vis), Fourier transform infrared (FTIR), and Transmission electron microscopy (TEM). Additionally, the synthesized s-Co3O4 NPs showed better electrocatalytic properties toward the oxygen evolution reaction (OER) in comparison to previously reported Co3O4 NPs and nanowires, which could be due to the more exposed electrocatalytic active sites on the s-Co3O4 NPs. Moreover, the electrocatalytic activity of the s-Co3O4 NPs was comparable to the previously reported RuO2 catalysts. By taking advantage of the proposed recycling route, we would expect that various valuable transition metal oxide NPs could be prepared from SLIBs
Compressive Strength Development of High-Volume Fly Ash Ultra-High-Performance Concrete under Heat Curing Condition with Time
This research investigated the effect of fly ash content on the compressive strength development of ultra-high-performance concrete (UHPC) at different curing conditions, i.e., the standard curing condition and the heat curing. A total of 20 mixtures were prepared to cast specimens to measure the compressive strength at different ages from 3 days to 180 days. Additionally, 300 specimens were prepared to estimate the appropriate heat curing period at the early ages in terms of enhancing the 28-day compressive strength of UHPC with high content of fly ash (FA). From the regression analysis using test data, empirical equations were formulated to assess the compressive strength development of UHPC considering the FA content and maturity function. Test results revealed that the preference of the addition of FA for enhancing the compressive strength of UHPC requires the early heat curing procedure which can be recommended as at least 2 days under 90 °C. Moreover, the compressive strength of UHPC with FA under heat curing mostly reached its 28-day strength within 3 days. The proposed models based on the fib 2010 model can be a useful tool to reliably assess the compressive strength development of UHPC with high-volume fly ash (HVFA) (up to 70% fly ash content) under a heat curing condition that possesses a different performance from that of normal- and high-strength concrete. When 50% of the cement content was replaced by FA, the embodied CO2 emission for UHPC mixture reduced up to approximately 50%, which is comparable to the CO2 emission calculated from the conventional normal-strength concrete