30 research outputs found

    Identification of novel porcine and bovine parvoviruses closely related to human parvovirus 4

    Get PDF
    Human parvovirus 4 (PARV4), a recently discovered parvovirus found exclusively in human plasma and liver tissue, was considered phylogenetically distinct from other parvoviruses. Here, we report the discovery of two novel parvoviruses closely related to PARV4, porcine hokovirus (PHoV) and bovine hokovirus (BHoV), from porcine and bovine samples in Hong Kong. Their nearly full-length sequences were also analysed. PARV4-like viruses were detected by PCR among 44.4% (148/333) of porcine samples (including lymph nodes, liver, serum, nasopharyngeal and faecal samples), 13% (4/32) of bovine spleen samples and 2% (7/362) of human serum samples that were sent for human immunodeficiency virus and hepatitis C virus antibody tests. Three distinct parvoviruses were identified, including two novel parvoviruses, PHoV and BHoV, from porcine and bovine samples and PARV4 from humans, respectively. Analysis of genome pequences from seven PHoV strains, from three BHoV strains and from one PARV4 strain showed that the two animal parvoviruses were most similar to PARV4 with 61.5-63% nt identities and, together with PARV4 (HHoV), formed a distinct cluster within the family Parvoviridae. The three parvoviruses also differed from other parvoviruses by their relatively large predicted VP1 protein and the presence of a small unique conserved putative protein. Based on these results, we propose a separate genus, Hokovirus, to describe these three parvoviruses. The co-detection of porcine reproductive and respiratory syndrome virus, the agent associated with the recent 'high fever' disease outbreaks in pigs in China, from our porcine samples warrants further investigation. © 2008 SGM.published_or_final_versio

    Better living through biochemistry

    No full text

    Is asymmetry of the vocal cords by transcutaneous laryngeal ultrasonography a good predictor of voice quality changes after thyroidectomy?

    No full text
    IAES Free Paper Session: article no. ID: 925Conference Theme: Connecting Surgeon

    Development of immersive virtual reality system for planning of cargo loading operations

    No full text
    The real-time planning visualisation, precise allocation and loading optimisation in air cargo load planning operations are increasingly important as more considerations are needed on dangerous cargo loading, locations of lithium batteries, weight declaration and limited aircraft capacity. The planning of the unit load devices (ULD) can often be carried out only in a limited number of hours before flight departure. A dynamic air cargo load planning system is proposed with the optimisation of cargo load plan and visualisation of planning results in virtual reality systems. The system aims to optimise the cargo load planning and visualise the simulated loading planning decision on air cargo terminal operations. Adopting simulation tools, Cave Automatic Virtual Environment (CAVE) and virtual reality technologies, the results of planning with reference to weight and balance, Unit Load Device (ULD) dimensions, gateway, cargo nature and aircraft capacity are optimised and presented. The virtual reality system facilities planning, operations, education and training. Staff in terminals are usually trained in a traditional push-approach demonstration with enormous manual paperwork. With the support of newly customized immersive visualization environment, users can master the complex air cargo load planning techniques in a problem based training with the instant result being immersively visualised. The virtual reality system is developed with three-dimensional (3D) projectors, screens, workstations, truss system, 3D glasses, and demonstration platform and software. The content will be focused on the cargo planning and loading operations in an air cargo terminal. The system can assist decision-making process during cargo load planning in the complex operations of air cargo terminal operations. The processes of cargo loading, cargo build-up, security screening, and system monitoring can be further visualised. Scenarios are designed to support and demonstrate the daily operations of the air cargo terminal, including dangerous goods, pets and animals, and some special cargos

    Co-existence of multiple strains of two novel porcine bocaviruses in the same pig, a previously undescribed phenomenon in members of the family Parvoviridae, and evidence for inter-and intra-host genetic diversity and recombination

    No full text
    Despite the recent discovery of novel bocaviruses from porcine samples, their genetic evolution and diversity are poorly understood. This study reports the identification and complete genome characterization of two novel parvoviruses, porcine bocavirus 3 (PBoV3) and porcine bocavirus 4 (PBoV4), from various porcine tissues/samples, displaying marked intra-and inter-host genetic diversity, with recombination events. Bocaviruses were detected by PCR among 16.5% (55/333) of porcine samples (lymph nodes, serum, nasopharyngeal and faecal samples) from healthy, sick or deceased pigs from farms and a slaughterhouse in Hong Kong. As marked nucleotide polymorphisms were observed in the partial VP1 sequences, complete VP1 genes from one nasopharyngeal and three faecal specimens were cloned and sequenced, which suggested the presence of two different bocaviruses and demonstrated significant intra-and inter-host genetic diversity. Complete genome sequences revealed the presence of two bocaviruses, PBoV3 and PBoV4, in a faecal and nasopharyngeal specimen, respectively, with two genotypes, PBoV4-1 and PBoV4-2, in the latter. Their genomes encoded three ORFs, characteristic of bocaviruses. Phylogenetic analysis showed that they were distantly related to other bocaviruses, forming a distinct cluster within the genus. Recombination analysis showed possible recombination events among VP1 sequences of PBoV4 strains from a faecal specimen, with two breakpoints identified (with a 68 and 71 bp region), suggesting that different strains/variants within the same host could have arisen from recombination. This is the first report describing marked sequence diversity and the co-existence of two viruses of the family Parvoviridae within the same host, which may have originated from and, in turn, facilitated recombination. © 2011 SGM.link_to_subscribed_fulltex

    Building genetic containment

    No full text
    corecore