103 research outputs found

    Comparing the Effect of Naturally Restored Forest and Grassland on Carbon Sequestration and Its Vertical Distribution in the Chinese Loess Plateau

    Get PDF
    Vegetation restoration has been conducted in the Chinese Loess Plateau (CLP) since the 1950s, and large areas of farmland have been converted to forest and grassland, which largely results in SOC change. However, there has been little comparative research on SOC sequestration and distribution between secondary forest and restored grassland. Therefore, we selected typical secondary forest (SF-1 and SF-2) and restored grassland (RG-1 and RG-2) sites and determined the SOC storage. Moreover, to illustrate the factors resulting in possible variance in SOC sequestration, we measured the soil δ13C value. The average SOC content was 6.8, 9.9, 17.9 and 20.4 g kg−1 at sites SF-1, SF-2, RG-1 and RG-2, respectively. Compared with 0–100 cm depth, the percentage of SOC content in the top 20 cm was 55.1%, 55.3%, 23.1%, and 30.6% at sites SF-1, SF-2, RG-1 and RG-2, suggesting a higher SOC content in shallow layers in secondary forest and in deeper layers in restored grassland. The variation of soil δ13C values with depth in this study might be attributed to the mixing of new and old carbon and kinetic fractionation during the decomposition of SOM by microbes, whereas the impact of the Suess effect (the decline of 13C atmospheric CO2 values with the burning of fossil fuel since the Industrial Revolution) was minimal. The soil δ13C value increased sharply in the top 20 cm, which then increased slightly in deeper layers in secondary forest, indicating a main carbon source of surface litter. However the soil δ13C values exhibited slow increases in the whole profile in the restored grasslands, suggesting that the contribution of roots to soil carbon in deeper layers played an important role. We suggest that naturally restored grassland would be a more effective vegetation type for SOC sequestration due to higher carbon input from roots in the CLP

    Orbital interactions and chemical reactivity of metal particles and metal surfaces

    Get PDF
    A review is presented with 101 refs. on chem. bonding to metal surfaces and small metal particles demonstrating the power of symmetry concepts to predict changes in chem. bonding. Ab-initio calcns. of chemisorption to small particles, as well as semiempirical extended Hueckel calcns. applied to the study of the reactivity of metal slabs are reviewed. On small metal particles, classical notions of electron promotion and hybridization are found to apply. The surroundings of a metal atom (ligands in complexes, other metal atoms at surfaces), affect bonding and reactivity through the prehybridization they induce. A factor specific for large particles and surfaces is the required localization of electrons on the atoms involved in the metal surface bond. At the surface, the bond energy is found to relate to the grou8p orbital local d. of states at the Fermi level. The use of this concept is extensively discussed and illustrated for chemisorption of CO and dissocn. of NO on metal surfaces. A discussion is given of the current decompn. schemes of bond energies and related concepts (exchange (Pauli)-repulsion, polarization, charge transfer). The role of non-orthogonality of fragment orbitals and of kinetic and potential energy for Pauli repulsion and (orbital) polarization is analyzed. Numerous examples are discussed to demonstrate the impact of those concepts on chem. bonding theor

    Regional-scale climate-variability synchrony of cholera epidemics in West Africa

    Get PDF
    BACKGROUND: The relationship between cholera and climate was explored in Africa, the continent with the most reported cases, by analyzing monthly 20-year cholera time series for five coastal adjoining West African countries: Côte d'Ivoire, Ghana, Togo, Benin and Nigeria. METHODS: We used wavelet analyses and derived methods because these are useful mathematical tools to provide information on the evolution of the periodic component over time and allow quantification of non-stationary associations between time series. RESULTS: The temporal variability of cholera incidence exhibits an interannual component, and a significant synchrony in cholera epidemics is highlighted at the end of the 1980's. This observed synchrony across countries, even if transient through time, is also coherent with both the local variability of rainfall and the global climate variability quantified by the Indian Oscillation Index. CONCLUSION: Results of this study suggest that large and regional scale climate variability influence both the temporal dynamics and the spatial synchrony of cholera epidemics in human populations in the Gulf of Guinea, as has been described for two other tropical regions of the world, western South America and Bangladesh

    Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Himalayan zones, with dense forest vegetation, cover a fifth part of India and store a third part of the country reserves of soil organic carbon (SOC). However, the details of altitudinal distribution of these carbon stocks, which are vulnerable to forest management and climate change impacts, are not well known.</p> <p>Results</p> <p>This article reports the results of measuring the stocks of SOC along altitudinal gradients. The study was carried out in the coniferous subtropical and broadleaf temperate forests of Garhwal Himalaya. The stocks of SOC were found to be decreasing with altitude: from 185.6 to 160.8 t C ha<sup>-1 </sup>and from 141.6 to 124.8 t C ha<sup>-1 </sup>in temperature (<it>Quercus leucotrichophora</it>) and subtropical (<it>Pinus roxburghii</it>) forests, respectively.</p> <p>Conclusion</p> <p>The results of this study lead to conclusion that the ability of soil to stabilize soil organic matter depends negatively on altitude and call for comprehensive theoretical explanation</p

    Reproductive biology of the pampas deer (Ozotoceros bezoarticus): a review

    Get PDF
    The pampas deer (Ozotoceros bezoarticus) is a South American grazing deer which is in extreme danger of extinction. Very little is known about the biology of the pampas deer. Moreover, most information has not been published in peer-reviewed scientific journals, and is only available in local publications, theses, etc. Therefore, our aim was to update and summarize the available information regarding the reproductive biology of the pampas deer. Moreover, in most sections, we have also included new, unpublished information. Detailed descriptions are provided of the anatomy of both the female and the male reproductive tract, puberty onset, the oestrous cycle and gestational length. Birthing and the early postpartum period are described, as are maternal behaviour and early fawn development, seasonal distribution of births, seasonal changes in male reproduction and antler cycle, reproductive behaviour, semen collection, and cryopreservation. Finally, an overview is given and future directions of research are proposed

    Harnessing learning biases is essential for applying social learning in conservation

    Get PDF
    Social learning can influence how animals respond to anthropogenic changes in the environment, determining whether animals survive novel threats and exploit novel resources or produce maladaptive behaviour and contribute to human-wildlife conflict. Predicting where social learning will occur and manipulating its use are, therefore, important in conservation, but doing so is not straightforward. Learning is an inherently biased process that has been shaped by natural selection to prioritize important information and facilitate its efficient uptake. In this regard, social learning is no different from other learning processes because it too is shaped by perceptual filters, attentional biases and learning constraints that can differ between habitats, species, individuals and contexts. The biases that constrain social learning are not understood well enough to accurately predict whether or not social learning will occur in many situations, which limits the effective use of social learning in conservation practice. Nevertheless, we argue that by tapping into the biases that guide the social transmission of information, the conservation applications of social learning could be improved. We explore the conservation areas where social learning is highly relevant and link them to biases in the cues and contexts that shape social information use. The resulting synthesis highlights many promising areas for collaboration between the fields and stresses the importance of systematic reviews of the evidence surrounding social learning practices.BBSRC David Phillips Fellowship (BB/H021817/1

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore