34 research outputs found
Biomechanical evaluation of predictive parameters of progression in adolescent isthmic spondylolisthesis: a computer modeling and simulation study
<p>Abstract</p> <p>Background</p> <p>Pelvic incidence, sacral slope and slip percentage have been shown to be important predicting factors for assessing the risk of progression of low- and high-grade spondylolisthesis. Biomechanical factors, which affect the stress distribution and the mechanisms involved in the vertebral slippage, may also influence the risk of progression, but they are still not well known. The objective was to biomechanically evaluate how geometric sacral parameters influence shear and normal stress at the lumbosacral junction in spondylolisthesis.</p> <p>Methods</p> <p>A finite element model of a low-grade L5-S1 spondylolisthesis was constructed, including the morphology of the spine, pelvis and rib cage based on measurements from biplanar radiographs of a patient. Variations provided on this model aimed to study the effects on low grade spondylolisthesis as well as reproduce high grade spondylolisthesis. Normal and shear stresses at the lumbosacral junction were analyzed under various pelvic incidences, sacral slopes and slip percentages. Their influence on progression risk was statistically analyzed using a one-way analysis of variance.</p> <p>Results</p> <p>Stresses were mainly concentrated on the growth plate of S1, on the intervertebral disc of L5-S1, and ahead the sacral dome for low grade spondylolisthesis. For high grade spondylolisthesis, more important compression and shear stresses were seen in the anterior part of the growth plate and disc as compared to the lateral and posterior areas. Stress magnitudes over this area increased with slip percentage, sacral slope and pelvic incidence. Strong correlations were found between pelvic incidence and the resulting compression and shear stresses in the growth plate and intervertebral disc at the L5-S1 junction.</p> <p>Conclusions</p> <p>Progression of the slippage is mostly affected by a movement and an increase of stresses at the lumbosacral junction in accordance with spino-pelvic parameters. The statistical results provide evidence that pelvic incidence is a predictive parameter to determine progression in isthmic spondylolisthesis.</p
Engineered Models of Metastasis with Application to Study Cancer Biomechanics
Three-dimensional complex biomechanical interactions occur from the initial steps of tumor formation to the later phases of cancer metastasis. Conventional monolayer cultures cannot recapitulate the complex microenvironment and chemical and mechanical cues that tumor cells experience during their metastatic journey, nor the complexity of their interactions with other, noncancerous cells. As alternative approaches, various engineered models have been developed to recapitulate specific features of each step of metastasis with tunable microenvironments to test a variety of mechanistic hypotheses. Here the main recent advances in the technologies that provide deeper insight into the process of cancer dissemination are discussed, with an emphasis on three-dimensional and mechanical factors as well as interactions between multiple cell types
Assessment of two novel surgical positions for the reduction of scoliotic deformities: lateral leg displacement and hip torsion
Cobb angles and apical vertebral rotations (AVR) are two of the main scoliosis deformity parameters which spinal instrumentation and fusion techniques aim to reduce. Despite this importance, current surgical positioning techniques do not allow the reduction of these parameters. Two new surgical frame accessory prototypes have been developed: (1) a lateral leg displacer (LLD) allows lateral bending of a patientâs legs up to 75° in either direction and (2) a pelvic torsion device (PTD) which allows transverse plane twisting of a patientâs pelvis at 30° in either direction while raising the thoracic cushion, opposite to the raised side of the pelvis, by 5 cm. The objective of this study was to evaluate the ability of the LLD and PTD to reduce Cobb angles and AVR. Experimental testing was performed pre-operatively on 12 surgical scoliosis patients prone on an experimental surgical frame. Postero-anterior radiographs of their spines were taken in the neutral prone position on a surgical frame, and then again for 6 with their legs bent towards the convexity of their lowest structural curve, 4 with their pelvis raised on the convex side of their lowest structural curve and one each in opposite LLD and PTD intended use. Use of the LLD allowed for an average supplementary reduction of 16° (39%) for Cobb angle and 9° (33%) for AVR in the lowest structural curve. Use of the PTD allowed for an average supplementary reduction of 9° (19%) for Cobb angle and 17° (48%) for AVR in the lowest structural curve. Both devices were most efficient on thoraco-lumbar/lumbar curves. Opposite of intended use resulted in an increase in both Cobb angle and AVR. The LLD and PTD provide interesting novel methods to reduce Cobb angles and AVR through surgical positioning which can be used to facilitate instrumentation procedures by offering an improved intra-operative geometry of the spine