616 research outputs found

    EEG correlates of spatial orientation in the human retrosplenial complex

    Full text link
    © 2015 Elsevier Inc. Studies on spatial navigation reliably demonstrate that the retrosplenial complex (RSC) plays a pivotal role for allocentric spatial information processing by transforming egocentric and allocentric spatial information into the respective other spatial reference frame (SRF). While more and more imaging studies investigate the role of the RSC in spatial tasks, high temporal resolution measures such as electroencephalography (EEG) are missing. To investigate the function of the RSC in spatial navigation with high temporal resolution we used EEG to analyze spectral perturbations during navigation based on allocentric and egocentric SRF. Participants performed a path integration task in a clearly structured virtual environment providing allothetic information. Continuous EEG recordings were decomposed by independent component analysis (ICA) with subsequent source reconstruction of independent time source series using equivalent dipole modeling. Time-frequency transformation was used to investigate reference frame-specific orientation processes during navigation as compared to a control condition with identical visual input but no orientation task. Our results demonstrate that navigation based on an egocentric reference frame recruited a network including the parietal, motor, and occipital cortices with dominant perturbations in the alpha band and theta modulation in frontal cortex. Allocentric navigation was accompanied by performance-related desynchronization of the 8-13. Hz frequency band and synchronization in the 12-14. Hz band in the RSC. The results support the claim that the retrosplenial complex is central to translating egocentric spatial information into allocentric reference frames. Modulations in different frequencies with different time courses in the RSC further provide first evidence of two distinct neural processes reflecting translation of spatial information based on distinct reference frames and the computation of heading changes

    A Wireless Multifunctional SSVEP-Based Brain Computer Interface Assistive System

    Full text link
    IEEE Several kinds of brain-computer interface (BCI) systems have been proposed to compensate for the lack of medical technology for assisting patients who lose the ability to use motor functions to communicate with the outside world. However, most of the proposed systems are limited by their non-portability, impracticality and inconvenience because of the adoption of wired or invasive electroencephalography (EEG) acquisition devices. Another common limitation is the shortage of functions provided because of the difficulty of integrating multiple functions into one BCI system. In this study, we propose a wireless, non-invasive and multifunctional assistive system which integrates steady state visually evoked potential (SSVEP)-based BCI and a robotic arm to assist patients to feed themselves. Patients are able to control the robotic arm via the BCI to serve themselves food. Three other functions: video entertainment, video calling, and active interaction are also integrated. This is achieved by designing a functional menu and integrating multiple subsystems. A refinement decision-making mechanism is incorporated to ensure the accuracy and applicability of the system. Fifteen participants were recruited to validate the usability and performance of the system. The averaged accuracy and information transfer rate (ITR) achieved is 90.91% and 24.94 bit per min respectively. The feedback from the participants demonstrates that this assistive system is able to significantly improve the quality of daily life

    A wireless steady state visually evoked potential-based BCI eating assistive system

    Full text link
    © 2017 IEEE. Brain-Computer interface (BCI) which aims at enabling users to perform tasks through their brain waves has been a feasible and worth developing solution for growing demand of healthcare. Current proposed BCI systems are often with lower applicability and do not provide much help for reducing burdens of users because of the time-consuming preparation required by adopted wet sensors and the shortage of provided interactive functions. Here, by integrating a state visually evoked potential (SSVEP)-based BCI system and a robotic eating assistive system, we propose a non-invasive wireless steady state visually evoked potential (SSVEP)-based BCI eating assistive system that enables users with physical disabilities to have meals independently. The analysis compared different methods of classification and indicated the best method. The applicability of the integrated eating assistive system was tested by an Amyotrophic Lateral Sclerosis (ALS) patient, and a questionnaire reply and some suggestion are provided. Fifteen healthy subjects engaged the experiment, and an average accuracy of 91.35%, and information transfer rate (ITR) of 20.69 bit per min are achieved. For online performance evaluation, the ALS patient gave basic affirmation and provided suggestions for further improvement. In summary, we proposed a usable SSVEP-based BCI system enabling users to have meals independently. With additional adjustment of movement design of the robotic arm and classification algorithm, the system may offer users with physical disabilities a new way to take care of themselves

    Chaotic motions in the real fuzzy electronic circuits

    Get PDF
    Fuzzy electronic circuit (FEC) is firstly introduced, which is implementing Takagi-Sugeno (T-S) fuzzy chaotic systems on electronic circuit. In the research field of secure communications, the original source should be blended with other complex signals. Chaotic signals are one of the good sources to be applied to encrypt high confidential signals, because of its high complexity, sensitiveness of initial conditions, and unpredictability. Consequently, generating chaotic signals on electronic circuit to produce real electrical signals applied to secure communications is an exceedingly important issue. However, nonlinear systems are always composed of many complex equations and are hard to realize on electronic circuits. Takagi-Sugeno (T-S) fuzzy model is a powerful tool, which is described by fuzzy IF-THEN rules to express the local dynamics of each fuzzy rule by a linear system model. Accordingly, in this paper, we produce the chaotic signals via electronic circuits through T-S fuzzy model and the numerical simulation results provided by MATLAB are also proposed for comparison. T-S fuzzy chaotic Lorenz and Chen-Lee systems are used for examples and are given to demonstrate the effectiveness of the proposed electronic circuit. © 2013 Shih-Yu Li et al

    A slowly expanding disk and fast bipolar outflow from the S star π1 gruis

    Get PDF
    We study the molecular outflow of the nearby evolved S star π1 Gru. We imaged the outflow in CO J = 2-1 and dust continuum with the Submillimeter Array. The CO emission was detected over a very broad velocity width of ∼90 km s-1. Our high-resolution images show that the outflow at low velocities (≤15 km s-1) is elongated east-west and at high velocities (≥25 km s-1) is displaced north (at redshifted velocities) and south (blueshifted velocities) of center as defined by the dust continuum source. We model the spatial-kinematic structure of the low-velocity outflow as a flared disk with a central cavity of radius 200 AU and an expansion velocity of 11 km s-1, inclined by 55° to our line of sight. We attribute the high-velocity component to a bipolar outflow that emerges perpendicular to this disk with a velocity of up to ∼45 km s-1. This high-velocity outflow may play an important role in shaping the gas envelope previously ejected by the AGB star and thus produce a bipolar morphology when the object evolves into a proto-planetary nebula. © 2006. The American Astronomical Society. All rights reserved.published_or_final_versio

    Early detection of neurodegeneration in brain ischemia by manganese-enhanced MRI

    Get PDF
    This study aims to employ in vivo manganese-enhanced MRI (MEMRI) to detect neurodegenerative changes in two models of brain ischemia, photothrombotic cortical injury (PCI) and transient middle cerebral artery occlusion (MCAO) in rodents. After systemic Mn 2+ injection to both ischemic models, a close pattern of Tl-weighted hyperintensity was observed throughout different brain regions in comparison to the distribution of GFAP, MnSOD and GS immunoreactivities, whereby conventional MRI could hardly detect such. In addition, the infarct volumes in the posterior parts of the brain had significantly reduced after Mn 2+ injection to the MCAO model. It is suggested that exogenous Mn 2+ injection may provide enhanced MEMRI detection of oxidative stress and gliosis early after brain ischemia. Manganese may also mediate infarctions at remote brain regions in transient focal cerebral ischemia before delayed secondary damage takes place. © 2008 IEEE.published_or_final_versionThe 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) 2008, Vancouver, BC., 20-25 August 2008. in Proceedings of the 30th EMBS, 2008, p. 3884-388

    Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma

    Get PDF
    published_or_final_versio

    A note on clinical presentations of amebic liver abscess: an overview from 62 Thai patients

    Get PDF
    BACKGROUND: Amebic liver abscess is a tropical disease with a wide spectrum of clinical presentations. Given the often nonspecific nature of the complaints related to amebic abscess, a retrospective review of patients with confirmed disease to recognize the most common patterns of presentation is useful. Here, we study the clinical presentations of 62 Thai patients with amebic liver abscess. We also compare the clinical presentations of Anti HIV seronegative and Anti HIV seropositive patients. METHODS: A retrospective case review was carried out for 62 Thai patients who had been diagnosed with amebic liver abscess. Clinical information was collected, including symptoms and signs, location and number of abscesses. The Anti HIV serology laboratory investigation was also reviewed. RESULTS: According to our study, the common clinical symptoms and signs are abdominal pain (85.5 %), fever and chills (74.2 %), and abdominal tenderness (69.4 %). The location of the abscess was predominantly in the right lobe (74.2 %), and most of patients had a single abscess (77.4 %). Similar trends in clinical presentations were observed in both Anti HIV seropositive and Anti HIV seronegative subjects. CONCLUSIONS: In conclusion, the clinical presentations of our amebic liver abscess patients were similar to those in previous reports. A similarity to those in the pyogenic liver abscess patients can be observed. Nevertheless, we could not detect important significant differences in the clinical presentations between Anti HIV seropositive and Anti HIV seronegative groups of patients

    HURP Expression-Assisted Risk Scores Identify Prognosis Distinguishable Subgroups in Early Stage Liver Cancer

    Get PDF
    Hepatoma up-regulated protein (HURP) is a component of the chromatin-dependent pathway for spindle assembly. We examined the prognostic predictive value of HURP in human hepatocellular carcinoma (HCC).HURP expression was evaluated by immunocytochemistry of fine needle aspirated hepatoma cells in 97 HCC patients with Barcelona Clinic Liver Cancer (BCLC) stage A. Subsequently, these patients underwent partial hepatectomy (n = 18) or radiofrequency ablation (n = 79) and were followed for 2 to 35 months. The clinicopathological parameters were submitted for survival analysis.HURP expression in aspirated HCC cells was detected in 19.6% patients. Kaplan-Meier survival analysis showed that positive HURP expression (P = 0.023), cytological grading ≥3 (P = 0.008), AFP ≥35 ng/mL (P = 0.039), bilirubin ≥1.3 mg/dL (P = 0.010), AST ≥50 U/L (P = 0.003) and ALT ≥35 U/L (P = 0.005) were all associated with a shorter disease-free survival. A stepwise multivariate Cox proportional hazard model revealed that positive HURP expression (HR, 2.334; 95% CI, 1.165-4.679, P = 0.017), AST ≥50 U/L (HR, 3.697; 95% CI, 1.868-7.319, p<0.001), cytological grade ≥3 (HR, 4.249; 95% CI, 2.061-8.759, P<0.001) and tumor number >1 (HR, 2.633; 95% CI, 1.212-5.722, P = 0.014) were independent predictors for disease-free survival. By combining the 4 independent predictors, patients with different risk scores (RS) showed distinguishable disease-free survival (RS≤1 vs. RS = 2, P = 0.001; RS = 2 vs. RS = 3, P<0.001). In contrast, the patients cannot be separated into prognosis distinguishable subgroups by using AJCC/UICC TNM staging system.HCC patients with BCLC stage A can be separated into three prognosis-distinguishable groups by use of a risk score that is based upon HURP expression in aspirated HCC cells, ALT, cytological grade and tumor number
    • …
    corecore