31 research outputs found
Green technologies for sustainable water management: Introduction and overview
© 2016 American Society of Civil Engineers. This chapter presents the background, current development and future opportunities of green technologies and issues to facilitate strategic planning of sustainable water management systems. It describes the fundamental concepts and current and future applications of green technologies for sustainable improvement in water management. The chapter discusses the appropriate approaches and policies in achieving sustainable objectives and promoting green design and supplies for water utilization. Sustainable water management has received great attention over recent years because of its substantial benefits to the environment, society, and economy. Improvements in water management are likely to come from green technologies fueled by individual curiosity, dedicated effort, and opportunities within a strategic program supported by national and international agencies, universities, and industries. These innovations can significantly contribute to less nonrenewable resource requirement, reduced carbon footprint, greenhouse gas emissions and costs, minimized water losses, and enhanced removal of contaminants
Brief oral health promotion intervention among parents of young children to reduce early childhood dental decay
Background: Severe untreated dental decay affects a childâs growth, body weight, quality of life as well as cognitive development, and the effects extend beyond the child to the family, the community and the health care system. Early health behavioural factors, including dietary practices and eating patterns, can play a major role in the initiation and development of oral diseases, particularly dental caries. The parent/caregiver, usually the mother, has a critical role in the adoption of protective health care behaviours and parental feeding practices strongly influence childrenâs eating behaviours. This study will test if an early oral health promotion intervention through the use of brief motivational interviewing (MI) and anticipatory guidance (AG) approaches can reduce the incidence of early childhood dental decay and obesity. Methods: The study will be a randomised controlled study with parents and their new-born child/ren who are seen at 6â12 weeks of age by a child/community health nurse. Consenting parents will complete a questionnaire on oral health knowledge, behaviours, self-efficacy, oral health fatalism, parenting stress, prenatal and peri-natal health and socio-demographic factors at study commencement and at 12 and 36 months. Each childâparent pair will be allocated to an intervention or a standard care group, using a computer-generated random blocks. The standard group will be managed through the standard early oral health screening program; âlift the lipâ. The intervention group will be provided with tailored oral health counselling by oral health consultants trained in MI and AG. Participating children will be examined at 24, and 36 months for the occurrence of dental decay and have their height and weight recorded. Dietary information obtained from a food frequency chart will be used to determine food and dietary patterns. Data analysis will use intention to treat and per protocol analysis and will use tests of independent proportions and means. Multivariate statistical tests will also be used to take account of socio-economic and demographic factors in addition to parental knowledge, behaviour, self-efficacy, and parent/child stress. Discussion: The study will test the effects of an oral health promotion intervention to affect oral health and general health and have the potential to demonstrate the "common risk factor" approach to health promotion.Peter Arrow, Joseph Raheb and Margaret Mille
Assessment of future climate change impacts on hydrological behavior of Richmond River Catchment
This study evaluated the impacts of future climate change on the hydrological response of the Richmond River Catchment in New South Wales (NSW), Australia, using the conceptual rainfall-runoff modeling approach (the Hydrologiska Byrans Vattenbalansavdelning (HBV) model). Daily observations of rainfall, temperature, and streamflow and long-term monthly mean potential evapotranspiration from the meteorological and hydrological stations within the catchment for the period of 1972â2014 were used to run, calibrate, and validate the HBV model prior to the streamflow prediction. Future climate signals of rainfall and temperature were extracted from a multi-model ensemble of seven global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 3 (CMIP3) with three regional climate scenarios, A2, A1B, and B1. The calibrated HBV model was then forced with the ensemble mean of the downscaled daily rainfall and temperature to simulate daily future runoff at the catchment outlet for the early part (2016â2043), middle part (2044â2071), and late part (2072â2099) of the 21st century. All scenarios during the future periods present decreasing tendencies in the annual mean streamflow ranging between 1% and 24.3% as compared with the observed period. For the maximum and minimum flows, all scenarios during the early, middle, and late parts of the century revealed significant declining tendencies in the annual mean maximum and minimum streamflows, ranging between 30% and 44.4% relative to the observed period. These findings can assist the water managers and the community of the Richmond River Catchment in managing the usage of future water resources in a more sustainable way