24 research outputs found

    A second generation genetic map for rainbow trout (Oncorhynchus mykiss)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic maps characterizing the inheritance patterns of traits and markers have been developed for a wide range of species and used to study questions in biomedicine, agriculture, ecology and evolutionary biology. The status of rainbow trout genetic maps has progressed significantly over the last decade due to interest in this species in aquaculture and sport fisheries, and as a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition. We constructed a second generation genetic map for rainbow trout using microsatellite markers to facilitate the identification of quantitative trait loci for traits affecting aquaculture production efficiency and the extraction of comparative information from the genome sequences of model fish species.</p> <p>Results</p> <p>A genetic map ordering 1124 microsatellite loci spanning a sex-averaged distance of 2927.10 cM (Kosambi) and having 2.6 cM resolution was constructed by genotyping 10 parents and 150 offspring from the National Center for Cool and Cold Water Aquaculture (NCCCWA) reference family mapping panel. Microsatellite markers, representing pairs of loci resulting from an evolutionarily recent whole genome duplication event, identified 180 duplicated regions within the rainbow trout genome. Microsatellites associated with genes through expressed sequence tags or bacterial artificial chromosomes produced comparative assignments with tetraodon, zebrafish, fugu, and medaka resulting in assignments of homology for 199 loci.</p> <p>Conclusion</p> <p>The second generation NCCCWA genetic map provides an increased microsatellite marker density and quantifies differences in recombination rate between the sexes in outbred populations. It has the potential to integrate with cytogenetic and other physical maps, identifying paralogous regions of the rainbow trout genome arising from the evolutionarily recent genome duplication event, and anchoring a comparative map with the zebrafish, medaka, tetraodon, and fugu genomes. This resource will facilitate the identification of genes affecting traits of interest through fine mapping and positional cloning of candidate genes.</p

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Influence of enriched environment on viral encephalitis outcomes: behavioral and neuropathological changes in albino Swiss mice

    Get PDF
    An enriched environment has previously been described as enhancing natural killer cell activity of recognizing and killing virally infected cells. However, the effects of environmental enrichment on behavioral changes in relation to virus clearance and the neuropathology of encephalitis have not been studied in detail. We tested the hypothesis that environmental enrichment leads to less CNS neuroinvasion and/or more rapid viral clearance in association with T cells without neuronal damage. Stereology-based estimates of activated microglia perineuronal nets and neurons in CA3 were correlated with behavioral changes in the Piry rhabdovirus model of encephalitis in the albino Swiss mouse. Two-month-old female mice maintained in impoverished (IE) or enriched environments (EE) for 3 months were behaviorally tested. After the tests, an equal volume of Piry virus (IEPy, EEPy)-infected or normal brain homogenates were nasally instilled. Eight days post-instillation (dpi), when behavioral changes became apparent, brains were fixed and processed to detect viral antigens, activated microglia, perineuronal nets, and T lymphocytes by immuno- or histochemical reactions. At 20 or 40 dpi, the remaining animals were behaviorally tested and processed for the same markers. In IEPy mice, burrowing activity decreased and recovered earlier (8–10 dpi) than open field (20–40 dpi) but remained unaltered in the EEPy group. EEPy mice presented higher T-cell infiltration, less CNS cell infection by the virus and/or faster virus clearance, less microgliosis, and less damage to the extracellular matrix than IEPy. In both EEPy and IEPy animals, CA3 neuronal number remained unaltered. The results suggest that an enriched environment promotes a more effective immune response to clear CNS virus and not at the cost of CNS damag

    Altered phosphorylation, electrophysiology, and behavior on attenuation of PDE4B action in hippocampus

    No full text
    corecore