15 research outputs found

    Nanofibrous Scaffolds Incorporating PDGF-BB Microspheres Induce Chemokine Expression and Tissue Neogenesis In Vivo

    Get PDF
    Platelet-derived growth factor (PDGF) exerts multiple cellular effects that stimulate wound repair in multiple tissues. However, a major obstacle for its successful clinical application is the delivery system, which ultimately controls the in vivo release rate of PDGF. Polylactic-co-glycolic acid (PLGA) microspheres (MS) in nanofibrous scaffolds (NFS) have been shown to control the release of rhPDGF-BB in vitro. In order to investigate the effects of rhPDGF-BB release from MS in NFS on gene expression and enhancement of soft tissue engineering, rhPDGF-BB was incorporated into differing molecular weight (MW) polymeric MS. By controlling the MW of the MS over a range of 6.5 KDa–64 KDa, release rates of PDGF can be regulated over periods of weeks to months in vitro. The NFS-MS scaffolds were divided into multiple groups based on MS release characteristics and PDGF concentration ranging from 2.5–25.0 µg and evaluated in vivo in a soft tissue wound repair model in the dorsa of rats. At 3, 7, 14 and 21 days post-implantation, the scaffold implants were harvested followed by assessments of cell penetration, vasculogenesis and tissue neogenesis. Gene expression profiles using cDNA microarrays were performed on the PDGF-releasing NFS. The percentage of tissue invasion into MS-containing NFS at 7 days was higher in the PDGF groups when compared to controls. Blood vessel number in the HMW groups containing either 2.5 or 25 µg PDGF was increased above those of other groups at 7d (p<0.01). Results from cDNA array showed that PDGF strongly enhanced in vivo gene expression of the CXC chemokine family members such as CXCL1, CXCL2 and CXCL5. Thus, sustained release of rhPDGF-BB, controlled by slow-releasing MS associated with the NFS delivery system, enhanced cell migration and angiogenesis in vivo, and may be related to an induced expression of chemokine-related genes. This approach offers a technology to accurately control growth factor release to promote soft tissue engineering in vivo

    Phenotypic differences between dermal fibroblasts from different body sites determine their responses to tension and TGFβ1

    Get PDF
    BACKGROUND: Wounds in the nonglabrous skin of keloid-prone individuals tend to cause large disordered accumulations of collagen which extend beyond the original margins of the wound. In addition to abnormalities in keloid fibroblasts, comparison of dermal fibroblasts derived from nonwounded glabrous or nonglabrous skin revealed differences that may account for the observed location of keloids. METHODS: Fibroblast apoptosis and the cellular content of α-smooth-muscle actin, TGFβ1 receptorII and ED-A fibronectin were estimated by FACS analysis. The effects of TGFβ1 and serum were examined. RESULTS: In monolayer cultures non-glabrous fibroblasts were slower growing, had higher granularity and accumulated more α-smooth-muscle actin than fibroblasts from glabrous tissues. Keloid fibroblasts had the highest level of α-smooth-muscle actin in parallel with their expression level of ED-A fibronectin. TGFβ1 positively regulated α-smooth-muscle actin expression in all fibroblast cultures, although its effects on apoptosis in fibroblasts from glabrous and non-glabrous tissues were found to differ. The presence of collagen I in the ECM resulted in reduction of α-smooth-muscle actin. A considerable percentage of the apoptotic fibroblasts in attached gels were α-smooth-muscle actin positive. The extent of apoptosis correlated positively with increased cell and matrix relaxation. TGFβ1 was unable to overcome this apoptotic effect of matrix relaxation. CONCLUSION: The presence of myofibroblasts and the apoptosis level can be regulated by both TGFβ1 and by the extracellular matrix. However, reduction of tension in the matrix is the critical determinant. This predicts that the tension in the wound bed determines the type of scar at different body sites

    Involvement of Synthesis and Phosphorylation of Nuclear Protein Factors That Bind to the Positivecis-Acting Element in the Transcriptional Activation of the CYP2B1/B2 Gene by Phenobarbitonein Vivo

    No full text
    The synthesis and phosphorylation of protein factor(s) that bind to the positivecis-acting element (−69 to −98 nt) of the CYP2B1/B2 gene have been examinedin vivoin the rat. Treatment of rats with cycloheximide, a protein synthetic inhibitor, suppresses basal as well as phenobarbitone-induced levels of CYP2B1/B2 mRNA and its run-on transcription. Under these conditions, complex formation of the nuclear extract with the positive element is also inhibited, as judged by gel shift assays. Treatment of rats with 2-aminopurine, a general protein kinase inhibitor, blocks the phenobarbitone-mediated increase in CYP2B1/B2 mRNA, cell-free transcription of a minigene construct containing the positive element, pP450e179DNA, and binding of nuclear proteins to the positive element. Treatment of rats with okadaic acid, a protein phosphatase inhibitor, mimics the effects of phenobarbitone, but only partially. Thus, both phenobarbitone and okadaic acid individually enhance binding of the nuclear protein(s) to the positive element, cell-free transcription of the minigene construct, and phosphorylation of the not, vert, similar26- and 94-kDa proteins binding to the positive element. But unlike phenobarbitone, okadaic acid is not an inducer of CYP2B1/B2 mRNA or its run-on transcription. Thus, phenobarbitone-responsive positive element interactions constitute only a minimal requirement, and okadaic acid is perhaps not able to bring about the total requirement for activation of CYP2B1/B2 gene transcription that should include interaction between the minimal promoter and further upstream elements. An intriguing feature is the antagonistic effect of okadaic acid on phenobarbitone-mediated effects on CYP2B1/B2 mRNA levels, cell-free and run-on transcription, and nuclear protein binding to the positive element. The reason for this antagonism is not clear. It is concluded that phenobarbitone treatment enhancesin vivothe synthesis and phosphorylation of protein factors binding to the positive element and these constitute a minimal requirement for the transcriptional activation of the CYP2B1/B2 gene

    A 65-kDa protein mediates the positive role of heme in regulating the transcription of CYP2B1/B2 gene in rat liver

    No full text
    Heme deficiency precipitated by CoCl2 administration to rats leads to a striking decrease in the inducibility of CYP2B1/B2 mRNA levels and its transcription by phenobarbitone (PB), besides decreasing the basal levels. Exogenous hemin administration counteracts the effects of CoCl2 administration. The binding of nuclear proteins to labeled positive cis-acting element (-69 to -98 nucleotides) in the near 5'-upstream region of the gene is inhibited by CoCl2 administration to saline or PR-treated rats, as assessed in gel shift assays. Administration of exogenous hemin to the animal or addition in vitro to the extracts is able to overcome the effects of CoCl2 treatment. The protein mediating this effect has been purified from CoCl2 administered nuclear extracts by heparin-agarose, positive element oligonucleotide affinity, and heme affinity column chromatography. This 65-kDa protein manifests very little binding to the positive element, but in the presence of certain other nuclear proteins, shows a strong heme-responsive binding. The purified protein binds heme. It is also able to stimulate transcription of a minigene construct of the CYP2B1/B2 gene containing -179 nucleotides of the 5'-upstream region and the I exon in a cell-free system, manifesting heme response. It is concluded that the 65-kDa protein mediates the constitutive requirement of heme for the transcription of CYP2B1/B2 gene

    Characterization of a Negative cis-Acting DNA Element Regulating the Transcription of CYP2B1/B2 Gene in Rat Liver

    No full text
    The region -160 to -127 nt of the upstream of CYP-2B1/B2 gene has been found to function as a negative cis-acting element on the basis of DNase-I footprint and gel mobility shift assays as well as cell-free transcriptional assays using Bal-31 mutants. A reciprocal relationship in the interaction of the negative and the recently characterized positive elements with their respective protein factors has been found under repressed and induced conditions of the gene. The negative element also harbors the core glucocorticoid responsive sequence, TGTCCT. It is concluded that the negative element mediates the repressed state of the gene under the uninduced condition and also mediates the repressive effect of dexamethasone, when given along with the inducer phenobarbitone in rats. Dexamethasone is able to antagonize the effects of phenobarbitone at as low a concentration as 100 mu g/kg body wt in these animals. (C) 1995 Academic Press,Inc

    A model for the transcriptional regulation of the CYP2BJ/B2 gene in rat liver

    No full text
    The phenobarbitone-responsive minimal promoter has been shown to lie between nt - 179 and nt +1 in the 5' (upstream) region of the CYP2B1/B2 gene in rat liver, on the basis of the drug responsiveness of the sequence linked to human growth hormone gene as reporter and targeted to liver as an asialoglycoprotein-DNA complex in vivo. Competition analyses of the nuclear protein-DNA complexes formed in gel shift assays with the positive (nt -69 to -98) and negative (nt -126 to -160) cis elements (PE and NE, respectively) identified within this region earlier indicate that the same protein may be binding to both the elements, The protein species purified on PE and NE affinity columns appear to be identical based on SDS/PAGE analysis, where it migrates as a protein of 26-28 kDa. Traces of a high molecular weight protein (94-100 kDa) are also seen in the preparation obtained after one round of affinity chromatography, The purified protein stimulates transcription of a minigene construct containing the 179 nt on the 5' side of the CYP2B1/B2 gene linked to the I exon in a cell-free system from liver nuclei. The purified protein can give rise to all the three complexes (I, II, and III) with the PE, just as the crude nuclear extract, under appropriate conditions. Manipulations in vitro indicate that the NE has a significantly higher affinity for the dephosphorylated form than for the phosphorylated form of the protein. The PE binds both forms. Phenobarbitone treatment of the animal leads to a significant increase in the phosphorylation of the 26- to 28-kDa and 94-kDa proteins in nuclear labeling experiments followed by isolation on a PE affinity column. We propose that the protein binding predominantly to the NE in the dephosphorylated state characterizes the basal level of transcription of the CYP2B1/B2 gene. Phenobarbitone treatment leads to phosphorylation of the protein, shifting the equilibrium toward binding to the PE. This can promote interaction with an upstream enhancer through other proteins such as the 94-kDa protein and leads to a significant activation of transcription
    corecore