86 research outputs found

    Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    Full text link
    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs

    MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer

    Get PDF
    Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney. The role of the von-Hippel-Lindeau (VHL) tumour suppressor gene is well established in RCC with a loss of VHL protein leading to accumulated hypoxia-induced factor (HIF) and the subsequent transcriptional activation of multiple downstream targets. Recently, microRNAs (miRNAs) have been shown to be differentially expressed in RCC and their role in RCC pathogenesis is emerging. This month, in BMC Medicine, Gleadle and colleagues show that certain miRNAs are regulated by VHL in either a hypoxia-inducible factor (HIF)-dependent or HIF-independent manner in RCC. They also show that miRNA expression correlates with the survival of RCC patients

    GeV electron beams from a laser-plasma accelerator

    Get PDF
    High-quality electron beams with up to 1 GeV energy havebeen generated by a laser-driven plasma-based accelerator by guiding a 40TW peak power laser pulse in a 3.3 cm long gas-filled capillary dischargewaveguide

    GeV electron beams from a laser-plasma accelerator

    Get PDF
    Abstract-High-quality electron beams with up to 1 GeV energy have been generated by a laser-driven plasma-based accelerator by guiding a 40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide [1]

    GeV electron beams from a centimeter-scale channel guided laser wakefield accelerator

    Get PDF
    Laser wakefield accelerators can produce electric fields of order 10-100 GV/m, suitable for acceleration of electrons to relativistic energies. The wakefields are excited by a relativistically intense laser pulse propagating through a plasma and have a phase velocity determined by the group velocity of the light pulse. Two important effects that can limit the acceleration distance and hence the net energy gain obtained by an electron are diffraction of the drive laser pulse and particle-wake dephasing. Diffraction of a focused ultrashort laser pulse can be overcome by using preformed plasma channels. The dephasing limit can be increased by operating at a lower plasma density, since this results in an increase in the laser group velocity. Here we present detailed results on the generation of GeV-class electron beams using an intense femtosecond laser beam and a 3.3 cm long preformed discharge-based plasma channel [W. P. Leemans et al., Nature Physics 2, 696 (2006)]. The use of a discharge-based waveguide permitted operation at an order of magnitude lower density and 15 times longer distance than in previous experiments that relied on laser preformed plasma channels. Laser pulses with peak power ranging from 10-40 TW were guided over more than 20 Rayleigh ranges and high quality electron beams with energy up to 1 GeV were obtained by channeling a 40 TW peak power laser pulse. The dependence of the electron beam characteristics on capillary properties, plasma density, and laser parameters are discussed. (C) 2007 American Institute of Physics

    High Quality Electron Bunches up to 1 GeV from Laser Wakefield Acceleration at LBNL

    Get PDF
    Experiments at the LOASIS laboratory of LBNL havedemonstrated production of 100 MeV to 1 GeV electron bunches with lowenergy spread and low divergence from laser wakefield acceleration. Theradiation pressure of a 10 TW laser pulse, guided over 10 diffractionranges by a few-mm long plasma density channel, was used to drive anintense plasma wave (wakefield), producing electron bunches with energieson the order of 100 MeV and acceleration gradients on the order of 100GV/m. Beam energy was increased from 100 MeV to 1 GeV by using a few-cmlong guiding channel at lower density, driven by a 40 TW laser,demonstrating the anticipated scaling to higher beam energies. Particlesimulations indicate that the low energy spread beams were produced fromself-trapped electrons through the interplay of trapping, loading, anddephasing. Other experiments and simulations are also underway to controlinjection of particles into the wake, and hence improve beam quality andstability further

    Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    Get PDF
    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    Wavefront Measurement for Laser-Guiding Diagnostic

    Full text link
    The wavefront of a short laser pulse after interaction in a laser-plasma accelerator (LPA) was measured to diagnose laser-guiding quality. Experiments were performed on a 100 TW class laser at the LOASIS facility of LBNL using a hydrogenfilled capillary discharge waveguide. Laser-guiding with a pre-formed plasma channel allows the laser pulse to propagate over many Rayleigh lengths at high intensity and is crucial to accelerate electrons to the highest possible energy. Efficient coupling of laser energy into the plasma is realized when the laser and the channel satisfy a matched guiding condition, in which the wavefront remains flat within the channel. Using a wavefront sensor, the laser-guiding quality was diagnosed based on the wavefront of the laser pulse exiting the plasma channel. This wavefront diagnostic will contribute to achieving controlled, matched guiding in future experiments
    corecore