1,069 research outputs found

    A Smartphone Application for Skin Lesion Detection and Classification with Deep Learning Algorithms

    Get PDF
    The Skin Lesion (SL) classification has recently received a lot of attention. Because of the significant resemblance between these skin lesions, physicians spend a lot of time analyzing them. A Deep Learning (DL) based automated categorization system can help clinicians recognize the type of SL and improve the patient's health. In this research, DL approaches such as VGG-16, ResNet-50 and customized model are employed to detect the SL using a smartphone application. These models are trained on the SL classification dataset from the International Skin Imaging Collaboration (ISIC) 2019. The customized model over fits the other two models with a validation accuracy of 86.21%, whereas the validation accuracy of VGG-16 and ResNet-50 is 85.15% and 84.82%, respectively. Physicians will save time and have a higher precision rate in the automatic classification of SL utilizing DL

    Ribosomal oxygenases are structurally conserved from prokaryotes to humans

    Get PDF
    2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components1,2 and in the hydroxylation of transcription factors3 and splicing factor proteins4. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA5,6,7 and ribosomal proteins8 have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy9,10,11,12. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans8 raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone Nε-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases

    Histological and ultrastructural evaluation of the early healing of the lateral collateral ligament epiligament tissue in a rat knee model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, we evaluated the changes which occurred in the epiligament, an enveloping tissue of the ligament, during the ligament healing. We assessed the association of epiligament elements that could be involved in ligament healing.</p> <p>Methods</p> <p>Thirty-two 8-month old male Wistar rats were used in this study. In twenty-four of them the lateral collateral ligament of the knee joint was surgically transected and was allowed to heal spontaneously. The evaluation of the epiligament healing included light microscopy and transmission electron microscopy.</p> <p>Results</p> <p>At the eight, sixteenth and thirtieth day after injury, the animals were sacrificed and the ligaments were examined. Our results revealed that on the eight and sixteenth day post-injury the epiligament tissue is not completely regenerated. Till the thirtieth day after injury the epiligament is similar to normal, but not fully restored.</p> <p>Conclusion</p> <p>Our study offered a more complete description of the epiligament healing process and defined its important role in ligament healing. Thus, we provided a base for new strategies in ligament treatment.</p

    Effect of bio-engineering on size, shape, composition and rigidity of bacterial microcompartments

    Get PDF
    Bacterial microcompartments (BMCs) are proteinaceous organelles that are found in a broad range of bacteria and are composed of an outer shell that encases an enzyme cargo representing a specific metabolic process. The outer shell is made from a number of different proteins that form hexameric and pentameric tiles, which interact to allow the formation of a polyhedral edifice. We have previously shown that the Citrobacter freundii BMC associated with 1,2-propanediol utilization can be transferred into Escherichia coli to generate a recombinant BMC and that empty BMCs can be formed from just the shell proteins alone. Herein, a detailed structural and proteomic characterization of the wild type BMC is compared to the recombinant BMC and a number of empty BMC variants by 2D-gel electrophoresis, mass spectrometry, transmission electron microscopy (TEM) and atomic force microscopy (AFM). Specifically, it is shown that the wild type BMC and the recombinant BMC are similar in terms of composition, size, shape and mechanical properties, whereas the empty BMC variants are shown to be smaller, hollow and less malleable

    Effect of Visceral Disease Site on Outcomes in Patients With Metastatic Castration-resistant Prostate Cancer Treated With Enzalutamide in the PREVAIL Trial.

    Get PDF
    Background The Multinational Phase 3, Randomized, Double-Blind, Placebo-Controlled Efficacy and Safety Study of Oral MDV3100 in Chemotherapy-Naive Patients With Progressive Metastatic Prostate Cancer Who Have Failed Androgen Deprivation Therapy (PREVAIL) trial was unique as it included patients with visceral disease. This analysis was designed to describe outcomes for the subgroup of men from PREVAIL with specific sites of visceral disease to help clinicians understand how these patients responded to enzalutamide prior to chemotherapy.Patients and methods Prespecified analyses examined the coprimary endpoints of radiographic progression-free survival (rPFS) and overall survival (OS) only. All other efficacy analyses were post hoc. The visceral subgroup was divided into liver or lung subsets. Patients with both liver and lung metastases were included in the liver subset.Results Of the 1717 patients in PREVAIL, 204 (12%) had visceral metastases at screening (liver only or liver/lung metastases, n = 74; lung only metastases, n = 130). In patients with liver metastases, enzalutamide was associated with an improvement in rPFS (hazard ratio [HR], 0.44; 95% confidence interval [CI], 0.22-0.90) but not OS (HR, 1.04; 95% CI, 0.57-1.87). In patients with lung metastases only, the HR for rPFS (0.14; 95% CI, 0.06-0.36) and the HR for OS (0.59; 95% CI, 0.33-1.06) favored enzalutamide over placebo. Patients with liver metastases had worse outcomes than those with lung metastases, regardless of treatment. Enzalutamide was well tolerated in patients with visceral disease.Conclusions Enzalutamide is an active first-line treatment option for men with asymptomatic or mildly symptomatic chemotherapy-naive metastatic castration-resistant prostate cancer and visceral disease. Patients with lung-only disease fared better than patients with liver disease, regardless of treatment

    Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome

    Get PDF
    Introduction: Intravenous (IV) fluids may be associated with complications not often attributed to fluid type. Fluids with high chloride concentrations such as 0.9 % saline have been associated with adverse outcomes in surgery and critical care. Understanding the association between fluid type and outcomes in general hospitalized patients may inform selection of fluid type in clinical practice. We sought to determine if the type of IV fluid administered to patients with systemic inflammatory response syndrome (SIRS) is associated with outcome. Methods: This was a propensity-matched cohort study in hospitalized patients receiving at least 500 mL IV crystalloid within 48 hours of SIRS. Patient data was extracted from a large multi-hospital electronic health record database between January 1, 2009, and March 31, 2013. The primary outcome was in-hospital mortality. Secondary outcomes included length of stay, readmission, and complications measured by ICD-9 coding and clinical definitions. Outcomes were adjusted for illness severity using the Acute Physiology Score. Of the 91,069 patients meeting inclusion criteria, 89,363 (98 %) received 0.9 % saline whereas 1706 (2 %) received a calcium-free balanced solution as the primary fluid. Results: There were 3116 well-matched patients, 1558 in each cohort. In comparison with the calcium-free balanced cohort, the saline cohort experienced greater in-hospital mortality (3.27 % vs. 1.03 %, P <0.001), length of stay (4.87 vs. 4.38 days, P = 0.016), frequency of readmission at 60 (13.54 vs. 10.91, P = 0.025) and 90 days (16.56 vs. 12.58, P = 0.002) and frequency of cardiac, infectious, and coagulopathy complications (all P <0.002). Outcomes were defined by administrative coding and clinically were internally consistent. Patients in the saline cohort received more chloride and had electrolyte abnormalities requiring replacement more frequently (P <0.001). No differences were found in acute renal failure. Conclusions: In this large electronic health record, the predominant use of 0.9 % saline in patients with SIRS was associated with significantly greater morbidity and mortality compared with predominant use of balanced fluids. The signal is consistent with that reported previously in perioperative and critical care patients. Given the large population of hospitalized patients receiving IV fluids, these differences may confer treatment implications and warrant corroboration via large clinical trials. Trial registration: NCT02083198 clinicaltrials.gov; March 5, 201
    corecore