24,205 research outputs found

    Analytic Torsion on Hyperbolic Manifolds and the Semiclassical Approximation for Chern-Simons Theory

    Get PDF
    The invariant integration method for Chern-Simons theory for gauge group SU(2) and manifold \Gamma\H^3 is verified in the semiclassical approximation. The semiclassical limit for the partition function associated with a connected sum of hyperbolic 3-manifolds is presented. We discuss briefly L^2 - analytical and topological torsions of a manifold with boundary.Comment: 12 pages, LaTeX fil

    Accelerating universes driven by bulk particles

    Full text link
    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory.Comment: To appear in Phys. Rev. D, 16 pages, 3 eps figures, minor changes and references adde

    Graviton resonances on two-field thick branes

    Get PDF
    This work presents new results about the graviton massive spectrum in two-field thick branes. Analyzing the massive spectra with a relative probability method we have firstly showed the presence of resonance structures and obtained a connection between the thickness of the defect and the lifetimes of such resonances. We obtain another interesting results considering the degenerate Bloch brane solutions. In these thick brane models, we have the emergence of a splitting effect controlled by a degeneracy parameter. When the degeneracy constant tends to a critical value, we have found massive resonances to the gravitational field indicating the existence of modes highly coupled to the brane. We also discussed the influence of the brane splitting effect over the resonance lifetimes.Comment: 15 pages, 8 figure

    Critical energy flux and mass in solvable theories of 2d dilaton gravity

    Get PDF
    In this paper we address the issue of determining the semiclassical threshold for black hole formation in the context of a one-parameter family of theories which continuously interpolates between the RST and BPP models. We find that the results depend significantly on the initial static configuration of the spacetime geometry before the influx of matter is turned on. In some cases there is a critical energy density, given by the Hawking rate of evaporation, as well as a critical mass mcrm_{cr} (eventually vanishing). In others there is neither mcrm_{cr} nor a critical flux.Comment: LaTeX file, 12 pages, 4 figure

    Photon spectra from WIMP annihilation

    Get PDF
    If the present dark matter in the Universe annihilates into Standard Model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth, and in particular, to the observed gamma ray fluxes. The magnitude of such contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation into Standard Model particle-antiparticle pairs obtained by extensive Monte Carlo simulations. We present results for each individual annihilation channel and provide analytical fitting formulae for the different spectra for a wide range of WIMP masses.Comment: 23 pages, 37 figures and 23 table

    Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators

    Get PDF
    Mechanical resonators based on a single carbon nanotube are exceptional sensors of mass and force. The force sensitivity in these ultra-light resonators is often limited by the noise in the detection of the vibrations. Here, we report on an ultra-sensitive scheme based on a RLC resonator and a low-temperature amplifier to detect nanotube vibrations. We also show a new fabrication process of electromechanical nanotube resonators to reduce the separation between the suspended nanotube and the gate electrode down to ∼150\sim 150~nm. These advances in detection and fabrication allow us to reach 0.5 pm/Hz0.5~\mathrm{pm}/\sqrt{\mathrm{Hz}} displacement sensitivity. Thermal vibrations cooled cryogenically at 300~mK are detected with a signal-to-noise ratio as high as 17~dB. We demonstrate 4.3 zN/Hz4.3~\mathrm{zN}/\sqrt{\mathrm{Hz}} force sensitivity, which is the best force sensitivity achieved thus far with a mechanical resonator. Our work is an important step towards imaging individual nuclear spins and studying the coupling between mechanical vibrations and electrons in different quantum electron transport regimes.Comment: 9 pages, 5 figure
    • …
    corecore