21 research outputs found

    Lopinavir/Ritonavir and Darunavir/Cobicistat in Hospitalized COVID-19 Patients: Findings From the Multicenter Italian CORIST Study

    Get PDF
    Background: Protease inhibitors have been considered as possible therapeutic agents for COVID-19 patients. Objectives: To describe the association between lopinavir/ritonavir (LPV/r) or darunavir/cobicistat (DRV/c) use and in-hospital mortality in COVID-19 patients. Study Design: Multicenter observational study of COVID-19 patients admitted in 33 Italian hospitals. Medications, preexisting conditions, clinical measures, and outcomes were extracted from medical records. Patients were retrospectively divided in three groups, according to use of LPV/r, DRV/c or none of them. Primary outcome in a time-to event analysis was death. We used Cox proportional-hazards models with inverse probability of treatment weighting by multinomial propensity scores. Results: Out of 3,451 patients, 33.3% LPV/r and 13.9% received DRV/c. Patients receiving LPV/r or DRV/c were more likely younger, men, had higher C-reactive protein levels while less likely had hypertension, cardiovascular, pulmonary or kidney disease. After adjustment for propensity scores, LPV/r use was not associated with mortality (HR = 0.94, 95% CI 0.78 to 1.13), whereas treatment with DRV/c was associated with a higher death risk (HR = 1.89, 1.53 to 2.34, E-value = 2.43). This increased risk was more marked in women, in elderly, in patients with higher severity of COVID-19 and in patients receiving other COVID-19 drugs. Conclusions: In a large cohort of Italian patients hospitalized for COVID-19 in a real-life setting, the use of LPV/r treatment did not change death rate, while DRV/c was associated with increased mortality. Within the limits of an observational study, these data do not support the use of LPV/r or DRV/c in COVID-19 patients

    Monoclonal antibodies and amyloid removal as a therapeutic strategy for cardiac amyloidosis

    No full text
    : Cardiac amyloidosis (CA) is an infiltrative disease caused by progressive deposition of amyloid fibres in the heart. The most common forms include immunoglobulin light-chain and transthyretin amyloidosis. Current therapies for CA either stabilize or block the production of amyloidogenic precursors, preventing further amyloid deposition. This approach, while reducing cell damage and disease progression, does not target pre-existing amyloid deposits. Conversely, amyloid removal might stimulate functional recovery of the affected organ, thus improving quality of life and survival. A therapeutic strategy based on monoclonal antibodies capable of selectively binding amyloid deposits and inducing their removal has recently been tested in various clinical trial, with promising results, and could represent a key treatment for CA in the near future

    Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells.

    No full text
    Resistance to imatinib mesylate is an emergent problem in the treatment of Bcr-Abl expressing myelogenous leukemias and additional therapeutic strategies are required. We observed that galangin, a non-toxic, naturally occurring flavonoid was effective as anti-proliferative, and apoptotic agent in Bcr-Abl expressing K562 and KCL22 cells and in imatinib mesylate resistant K562-R and KCL22-R cells. Galangin induced an arrest of cells in G0-G1phase of cell cycle and a decrease in pRb, cdk4, cdk1, cycline B levels; moreover, it was able to induce a monocytic differentiation of leukemic Bcr-Abl+ cells. Of note, galangin caused a decrease in Bcl-2 levels and markedly increased the apoptotic activity of imatinib both in sensitive or imatinib-resistant Bcr-Abl+ cell lines. In contrast, flavonoids unable to modify the Bcl-2 intracellular levels, such as fisetin and chrysin, did not increase the apoptotic effect of imatinib. These data suggest that galangin is an interesting candidate for a combination therapy in the treatment of imatinib-resistant leukemias

    Pterostilbene and 3'-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells

    No full text
    Pterostilbene and 3,5-hydroxypterostilbene are the natural 3,5-dimethoxy analogs of traps-resveratrol and piceatannol, two compounds which can induce apoptosis in tumor cells. In previous studies we demonstrated the importance of a 3,5-dimethoxy motif in conferring pro-apoptotic activity to stilbene based compounds so we now wanted to evaluate the ability of pterostilbene and 3,5-hydroxypterostilbene in inducing apoptosis in sensitive and resistant leukemia cells. When tested in sensitive cell lines, HL60 and HUT78, 3'-hydroxypterostilbene was 50-97 times more potent than traps-resveratrol in inducing apoptosis, while pterostilbene appeared barely active. However, both compounds, but not traps-resveratrol and piceatannol, were able to induce apoptosis in the two Fas-ligand resistant lymphoma cell lines, HUT78B1 and HUT78B3, and the multi drug-resistant leukemia cell lines HL60-R and K562-ADR (a Bcr-Abl-expressing cell line resistant to imatinib mesylate). Of note, pterostilbene-induced apoptosis was not inhibited by the pancaspase-inhibitor Z-VAD-fmk, suggesting that this compound acts through a caspase-independent pathway. On the contrary, 3'-hydroxypterostilbene seemed to trigger apoptosis through the intrinsic apoptotic pathway: indeed, it caused a marked disruption of the mitochondrial membrane potential A P and its apoptotic effects were inhibited by Z-VAD-fmk and the caspase-9-inhibitor Z-LEND-fmk. Moreover, pterostilbene and 3'-hydroxypterostilbene, when used at concentrations that elicit significant apoptotic effects in tumor cell lines, did not show any cytotoxicity in normal hemopoietic stem cells. In conclusion, our data show that pterostilbene and particularly 3'-hydroxypterostilbene are interesting antitumor natural compounds that may be useful in the treatment of resistant hematological malignancies, including imatinib, non-responsive neoplasms

    Stilbene-based anticancer agents: Resveratrol analogues active toward HL60 leukemic cells with a non-specific phase mechanism.

    No full text
    Several stilbenes, related to known resveratrol, have been synthesized and tested for their anticancer effect on HL60 leukemia cell line, taking particular care of the cell cycle analysis. The most potent compound was the known (Z)-3,4',5-trimethoxystilbene (6b) which was active as apoptotic agent at 0.24 microM. Differently from other stilbenes (including resveratrol) that induced a prevalent recruitment of cells in S phase of cell cycle, we found a peculiar behavior of 6b that caused a decrease of cells in all phases of cell cycle (G0-G1, S, and G2-M) and a proportional increase of apoptotic cells. The potent pro-apoptotic activity shown by compound 6b and its effects on cell cycle make this compound of great interest for further investigations

    Studies on the apoptotic activity of natural and synthetic retinoids: discovery of a new class of synthetic terphenyls that potently support cell growth and inhibit apoptosis in neuronal and HL-60 cells

    No full text
    New terphenyl derivatives have been synthesized and tested for their effect on cell survival in serum-free cultures. These compounds protected HL60 cells from death and supported their growth with an activity higher than that of the natural 14-hydroxy-retro-retinol. Terphenyls 26 and 28 also possess antiapoptotic activity on neuronal cells, proving them as possible candidates for the treatment of neurodegenerative and ischemic diseases

    Heterocyclic and Phenyl Double-Bond-Locked Combretastatin Analogues Possessing Potent Apoptosis-inducing activity in HL60 and in MDR Cell lines

    No full text
    Two new series of combretastatin (CA-4) analogues have been prepared. The alkenyl motif of CA-4 was replaced either by a five-membered heterocyclic (isoxazoline or isoxazole) or by a six-membered ring (pyridine or benzene). The new compounds have been evaluated for their effects on tubulin assembly and for cytotoxic and apoptotic activities. Five compounds (18b, 20a, 21a, 34b, and 35b) demonstrated an attractive profile of cytotoxicity (IC50 < 1 muM) and apoptosis-inducing activity but poor antitubulin activity. The isoxazoline derivatives 18b, 20a, and 21a, demonstrated potent apoptotic activity different from that of natural CA-4. Their ability to block most cells in the G2 phase suggests that these compounds could act on targets different from the mitotic spindle. This would indicate activation of both the intrinsic and the extrinsic apoptotic pathways. The data suggest unambiguously that structural alteration of the stilbene motif of CA-4 can be extremely effective in producing potent apoptosis-inducing agents
    corecore