1,743 research outputs found
Binding between endohedral Na atoms in Si clathrate I; a first principles study
We investigate the binding nature of the endohedral sodium atoms with the
ensity functional theory methods, presuming that the clathrate I consists of a
sheaf of one-dimensional connections of Na@Si cages interleaved in three
perpendicular directions. Each sodium atom loses 30% of the 3s charge to
the frame, forming an ionic bond with the cage atoms; the rest of the electron
contributes to the covalent bond between the nearest Na atoms. The presumption
is proved to be valid; the configuration of the two Na atoms in the nearest
Si cages is more stable by 0.189 eV than that in the Si and
Si cages. The energy of the beads of the two distorted Na atoms is more
stable by 0.104 eV than that of the two infinitely separated Na atoms. The
covalent bond explains both the preferential occupancies in the Si cages
and the low anisotropic displacement parameters of the endohedral atoms in the
Si cages in the [100] directions of the clathrate I.Comment: First page: Affiliation added to PDF and PS versio
A skyrmion-based spin-torque nano-oscillator
A model for a spin-torque nano-oscillator based on the self-sustained
oscillation of a magnetic skyrmion is presented. The system involves a circular
nanopillar geometry comprising an ultrathin film free magnetic layer with a
strong Dzyaloshinkii-Moriya interaction and a polariser layer with a
vortex-like spin configuration. It is shown that spin-transfer torques due to
current flow perpendicular to the film plane leads to skyrmion gyration that
arises from a competition between geometric confinement due to boundary edges
and the vortex-like polarisation of the spin torques. A phenomenology for such
oscillations is developed and quantitative analysis using micromagnetics
simulations is presented. It is also shown that weak disorder due to random
anisotropy variations does not influence the main characteristics of the
steady-state gyration.Comment: 15 pages, 6 figure
Vortex oscillations induced by a spin-polarized current in a magnetic nanopillar: Evidence for a failure of the Thiele approach
We investigate the vortex excitations induced by a spin-polarized current in
a magnetic nanopillar by means of micromagnetic simulations and analytical
calculations. Damped motion, stationary vortex rotation and the switching of
the vortex core are successively observed for increasing values of the current.
We demonstrate that even for small amplitude of the vortex motion, the
analytical description based the classical Thiele approach can yield
quantitatively and qualitatively unsound results. We suggest and validate a new
analytical technique based on the calculation of the energy dissipation
Modified permittivity observed in bulk Gallium Arsenide and Gallium Phosphide samples at 50 K using the Whispering Gallery mode method
Whispering Gallery modes in bulk cylindrical Gallium Arsenide and Gallium
Phosphide samples have been examined both in darkness and under white light at
50 K. In both samples we observed change in permittivity under light and dark
conditions. This results from a change in the polarization state of the
semiconductor, which is consistent with a free electron-hole
creation/recombination process. The permittivity of the semiconductor is
modified by free photocarriers in the surface layers of the sample which is the
region sampled by Whispering Gallery modes.Comment: 8 pages, 3 figure
Optimization of laser-plasma injector via beam loading effects using ionization-induced injection
Simulations of ionization induced injection in a laser driven plasma
wakefield show that high-quality electron injectors in the 50-200 MeV range can
be achieved in a gas cell with a tailored density profile. Using the PIC code
Warp with parameters close to existing experimental conditions, we show that
the concentration of in a hydrogen plasma with a tailored
density profile is an efficient parameter to tune electron beam properties
through the control of the interplay between beam loading effects and varying
accelerating field in the density profile. For a given laser plasma
configuration, with moderate normalized laser amplitude, and maximum
electron plasma density, , the
optimum concentration results in a robust configuration to generate electrons
at 150~MeV with a rms energy spread of 4\% and a spectral charge density of
1.8~pC/MeV.Comment: 13 pages, 10 figure
Switching the magnetic configuration of a spin valve by current induced domain wall motion
We present experimental results on the displacement of a domain wall by
injection of a dc current through the wall. The samples are 1 micron wide long
stripes of a CoO/Co/Cu/NiFe classical spin valve structure.
The stripes have been patterned by electron beam lithography. A neck has been
defined at 1/3 of the total length of the stripe and is a pinning center for
the domain walls, as shown by the steps of the giant magnetoresistance curves
at intermediate levels (1/3 or 2/3) between the resistances corresponding to
the parallel and antiparallel configurations. We show by electric transport
measurements that, once a wall is trapped, it can be moved by injecting a dc
current higher than a threshold current of the order of magnitude of 10^7
A/cm^2. We discuss the different possible origins of this effect, i.e. local
magnetic field created by the current and/or spin transfer from spin polarized
current.Comment: 3 pages, 3 figure
Quantitative MRFM characterization of the autonomous and forced dynamics in a spin transfer nano-oscillator
Using a magnetic resonance force microscope (MRFM), the power emitted by a
spin transfer nano-oscillator consisting of a normally magnetized PyCuPy
circular nanopillar is measured both in the autonomous and forced regimes. From
the power behavior in the subcritical region of the autonomous dynamics, one
obtains a quantitative measurement of the threshold current and of the noise
level. Their field dependence directly yields both the spin torque efficiency
acting on the thin layer and the nature of the mode which first
auto-oscillates: the lowest energy, spatially most uniform spin-wave mode. From
the MRFM behavior in the forced dynamics, it is then demonstrated that in order
to phase-lock this auto-oscillating mode, the external source must have the
same spatial symmetry as the mode profile, i.e., a uniform microwave field must
be used rather than a microwave current flowing through the nanopillar
- …