792 research outputs found

    X-Ray Diffuse Scattering Study on Ionic-Pair Displacement Correlations in Relaxor Lead Magnesium Niobate

    Full text link
    Ionic-pair equal-time displacement correlations in relaxor lead magnesium niobate, Pb(Mg1/3Nb2/3)O3Pb(Mg_{1/3}Nb_{2/3})O_{3}, have been investigated at room temperature in terms of an x-ray diffuse scattering technique. Functions of the distinct correlations have been determined quantitatively. The results show the significantly strong rhombohedral-polar correlations regarding Pb-O, Mg/Nb-O, and O-O' pairs. Their spatial distribution forms an ellipse or a sphere with the radii of 30-80A˚\AA. This observation of local structure in the system proves precursory presence of the polar microregions in the paraelectric state which leads to the dielectric dispersion.Comment: 11 pages, 3 figure

    Real-time wavefront control for the PALM-3000 high order adaptive optics system

    Get PDF
    We present a cost-effective scalable real-time wavefront control architecture based on off-the-shelf graphics processing units hosted in an ultra-low latency, high-bandwidth interconnect PC cluster environment composed of modules written in the component-oriented language of nesC. We demonstrate the architecture is capable of supporting the most computation and memory intensive wavefront reconstruction method (vector-matrix-multiply) at frame rates up to 2 KHz with latency under 250 &mgr;s for the PALM-3000 adaptive optics systems, a state-of-the-art upgrade on the 5.1 meter Hale Telescope that consists of a 64x64 subaperture Shack-Hartmann wavefront sensor and a 3368 active actuator high order deformable mirror in series with a 349 actuator "woofer" DM. This architecture can easily scale up to support larger AO systems at higher rates and lower latency

    Status of the PALM-3000 high-order adaptive optics system

    Get PDF
    The PALM-3000 upgrade to the Palomar Adaptive Optics system on the 5.1 meter Hale telescope will deliver extreme adaptive optics correction in near-infrared wavelengths and diffraction-limited images in visible wavelengths. PALM-3000 will use a 3388-actuator tweeter and a 241-actuator woofer deformable mirror, a Shack-Hartmann wavefront sensor with selectable pupil sampling, and an innovative wavefront control computer based on a cluster of 17 graphics processing units to correct wavefront aberrations at scales as fine as 8.1 cm at the telescope pupil using natural guide stars. The system is currently undergoing integration and testing, with deployment at Palomar Observatory planned in early 2011. We present the detailed design of key aspects of the adaptive optics system, and the current status of the deformable mirror characterization, wavefront sensor performance, and testbed activities

    Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites

    Get PDF
    Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter μ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, μ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery

    PALM-3000 high-order adaptive optics system for Palomar Observatory

    Get PDF
    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager

    Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry

    Full text link
    In this paper we examine the role of crystal chemistry factors in creating conditions for formation of magnetoelectric ordering in BiFeO3. It is generally accepted that the main reason of the ferroelectric distortion in BiFeO3 is concerned with a stereochemical activity of the Bi lone pair. However, the lone pair is stereochemically active in the paraelectric orthorhombic beta-phase as well. We demonstrate that a crucial role in emerging of phase transitions of the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order types belongs to the change of the degree of the lone pair stereochemical activity - its consecutive increase with the temperature decrease. Using the structural data, we calculated the sign and strength of magnetic couplings in BiFeO3 in the range from 945 C down to 25 C and found the couplings, which undergo the antiferromagnetic-ferromagnetic transition with the temperature decrease and give rise to the antiferromagnetic ordering and its delay in regard to temperature, as compared to the ferroelectric ordering. We discuss the reasons of emerging of the spatially modulated spin structure and its suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table

    Real-time wavefront control for the PALM-3000 high order adaptive optics system

    Get PDF
    We present a cost-effective scalable real-time wavefront control architecture based on off-the-shelf graphics processing units hosted in an ultra-low latency, high-bandwidth interconnect PC cluster environment composed of modules written in the component-oriented language of nesC. We demonstrate the architecture is capable of supporting the most computation and memory intensive wavefront reconstruction method (vector-matrix-multiply) at frame rates up to 2 KHz with latency under 250 &mgr;s for the PALM-3000 adaptive optics systems, a state-of-the-art upgrade on the 5.1 meter Hale Telescope that consists of a 64x64 subaperture Shack-Hartmann wavefront sensor and a 3368 active actuator high order deformable mirror in series with a 349 actuator "woofer" DM. This architecture can easily scale up to support larger AO systems at higher rates and lower latency

    Identification of Novel SNPs in Glioblastoma Using Targeted Resequencing

    Get PDF
    High-throughput sequencing opens avenues to find genetic variations that may be indicative of an increased risk for certain diseases. Linking these genomic data to other “omics” approaches bears the potential to deepen our understanding of pathogenic processes at the molecular level. To detect novel single nucleotide polymorphisms (SNPs) for glioblastoma multiforme (GBM), we used a combination of specific target selection and next generation sequencing (NGS). We generated a microarray covering the exonic regions of 132 GBM associated genes to enrich target sequences in two GBM tissues and corresponding leukocytes of the patients. Enriched target genes were sequenced with Illumina and the resulting reads were mapped to the human genome. With this approach we identified over 6000 SNPs, including over 1300 SNPs located in the targeted genes. Integrating the genome-wide association study (GWAS) catalog and known disease associated SNPs, we found that several of the detected SNPs were previously associated with smoking behavior, body mass index, breast cancer and high-grade glioma. Particularly, the breast cancer associated allele of rs660118 SNP in the gene SART1 showed a near doubled frequency in glioblastoma patients, as verified in an independent control cohort by Sanger sequencing. In addition, we identified SNPs in 20 of 21 GBM associated antigens providing further evidence that genetic variations are significantly associated with the immunogenicity of antigens

    Structural study of an amorphous NiZr2 alloy by anomalous wide angle X-ray scattering and Reverse Monte Carlo simulations

    Full text link
    The local atomic structure of an amorphous NiZr2 alloy was investigated using the anomalous wide-angle x-ray scattering (AWAXS), differential anomalous scattering (DAS) and reverse Monte Carlo (RMC) simulations techniques. The AWAXS measurements were performed at eight different incident photon energies, including some close to the Ni and Zr K edges. From the measurements eight total structure factor S(K,E) were derived. Using the AWAXS data four differential structure factors DSFi(K,Em,En) were derived, two about the Ni and Zr edges. The partial structure factors SNi-Ni(K), SNi-Zr(K) and SZr-Zr(K) were estimated by using two different methods. First, the S(K,E) and DSFi(K,Em,En) factors were combined and used in a matrix inversion process. Second, three S(K,E) factors were used as input data in the RMC technique. The coordination numbers and interatomic distances for the first neighbors extracted from the partial structure factors obtained by these two methods show a good agreement. By using the three-dimensional structure derived from the RMC simulations, the bond-angle distributions were calculated and they suggest the presence of distorted triangular-faced polyhedral units in the amorphous NiZr2 structure. We have used the Warren chemical short-range order parameter to evaluate the chemical short-range order for the amorphous NiZr2 alloy and for the NiZr2 compound. The calculated values show that the chemical short-range order found in these two materials is similar to that found in a solid solution.Comment: Submitted to Phys. Rev. B, 8 figure
    corecore