14 research outputs found

    Signal transduction in a covalent post-assembly modification cascade

    Get PDF
    Natural reaction cascades control the movement of biomolecules between cellular compartments. Inspired by these systems, we report a synthetic reaction cascade employing post-assembly modification reactions to direct the partitioning of supramolecular complexes between phases. The system is composed of a self-assembled tetrazine-edged FeII8L12 cube and a maleimide-functionalized FeII4L6 tetrahedron. Norbornadiene (NBD) functions as the stimulus that triggers the cascade, beginning with the inverse-electron-demand Diels–Alder reaction of NBD with the tetrazine moieties of the cube. This reaction generates cyclopentadiene as a transient by-product, acting as a relay signal that subsequently undergoes a Diels–Alder reaction with the maleimide-functionalized tetrahedron. Cyclooctyne can selectively inhibit the cascade by outcompeting NBD as the initial trigger. Initiating the cascade with 2-octadecyl NBD leads to selective alkylation of the tetrahedron upon cascade completion. The increased lipophilicity of the C18-tagged tetrahedron drives this complex into a non-polar phase, allowing its isolation from the initially inseparable mixture of complexes

    Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity

    Get PDF
    The helicates—chiral assemblies of two or more metal atoms linked by short or relatively rigid multidentate organic ligands—may be regarded as non-peptide mimetics of α-helices because they are of comparable size and have shown some relevant biological activity. Unfortunately, these beautiful helical compounds have remained difficult to use in the medicinal arena because they contain mixtures of isomers, cannot be optimized for specific purposes, are insoluble, or are too difficult to synthesize. Instead, we have now prepared thermodynamically stable single enantiomers of monometallic units connected by organic linkers. Our highly adaptable self-assembly approach enables the rapid preparation of ranges of water-stable, helicate-like compounds with high stereochemical purity. One such iron(II) ‘flexicate’ system exhibits specific interactions with DNA, promising antimicrobial activity against a Gram-positive bacterium (methicillin-resistant Staphylococcus aureus, MRSA252), but also, unusually, a Gram-negative bacterium (Escherichia coli, MC4100), as well as low toxicity towards a non-mammalian model organism (Caenorhabditis elegans)

    A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi

    No full text
    © 2017 Elsevier B.V. We evaluated eight biorefinery processes targeting the extraction of ulvan from Ulva ohnoi. Using a factorial design the effect of three sequential treatments (aqueous extraction of salt; ethanol extraction of pigments; and Na2C2O4 or HCl (0.05 M) extraction of ulvan) were evaluated based on the yield (% dry weight of biomass) and quality (uronic acid, sulfate, protein and ash content, constituent sugar and molecular weight analysis) of ulvan extracted. The aqueous extraction of salt followed by HCl extraction of ulvan gave higher yields (8.2 ± 1.1% w/w) and purity of ulvan than equivalent Na2C2O4 extracts (4.0 ± 1.0% w/w). The total sugar content of HCl extracts (624–670 μg/mg) was higher than Na2C2O4 extracts (365–426 μg/mg) as determined by constituent sugar with ulvan specific monosaccharides contributing 94.7–96.2% and 70.1–84.0%, respectively. Ulvan extracted from U. ohnoi was 53.1 mol% rhamnose, 27.8 mol% glucuronic acid, 10.1 mol% iduronic acid, and 5.3 mol% xylose with molecular weights ranging from 10.5–312 kDa depending on the biorefinery process employed. Therefore, the extraction of high quality ulvan from U. ohnoi is facilitated by an aqueous pre-treatment and subsequent HCl-extraction of ulvan as part of a cascading biorefinery model delivering salt, ulvan, and a protein enriched residual biomass.</jats:p

    A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi

    No full text
    © 2017 Elsevier B.V. We evaluated eight biorefinery processes targeting the extraction of ulvan from Ulva ohnoi. Using a factorial design the effect of three sequential treatments (aqueous extraction of salt; ethanol extraction of pigments; and Na2C2O4 or HCl (0.05 M) extraction of ulvan) were evaluated based on the yield (% dry weight of biomass) and quality (uronic acid, sulfate, protein and ash content, constituent sugar and molecular weight analysis) of ulvan extracted. The aqueous extraction of salt followed by HCl extraction of ulvan gave higher yields (8.2 ± 1.1% w/w) and purity of ulvan than equivalent Na2C2O4 extracts (4.0 ± 1.0% w/w). The total sugar content of HCl extracts (624–670 μg/mg) was higher than Na2C2O4 extracts (365–426 μg/mg) as determined by constituent sugar with ulvan specific monosaccharides contributing 94.7–96.2% and 70.1–84.0%, respectively. Ulvan extracted from U. ohnoi was 53.1 mol% rhamnose, 27.8 mol% glucuronic acid, 10.1 mol% iduronic acid, and 5.3 mol% xylose with molecular weights ranging from 10.5–312 kDa depending on the biorefinery process employed. Therefore, the extraction of high quality ulvan from U. ohnoi is facilitated by an aqueous pre-treatment and subsequent HCl-extraction of ulvan as part of a cascading biorefinery model delivering salt, ulvan, and a protein enriched residual biomass.</jats:p

    Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants

    No full text
    The agricultural production of ruminants is responsible for 24% of global methane emissions, contributing 39% of emissions of this greenhouse gas from the agricultural sector. Strategies to mitigate ruminant methanogenesis include the use of methanogen inhibitors. For example, the seaweeds Asparagopsis taxiformis and Asparagopsis armata included at low levels in the feed of cattle and sheep inhibit methanogenesis by up to 98%, with evidence of improvements in feed utilisation efficiency. This has resulted in an increasing interest in and demand for these seaweeds globally. In response, research is progressing rapidly to facilitate Asparagopsis cultivation at large scale, and to develop aquaculture production systems to enable a high quality and consistent supply chain. In addition to developing robust strategies for sustainable production, it is important to consider and evaluate the benefits and risks associated with its production and subsequent use as an antimethanogenic feed ingredient for ruminant livestock. This review focuses on the relevant ruminal biochemical pathways, degradation, and toxicological risks associated with bromoform (CHBr₃), the major active ingredient for inhibition of methanogenesis in Asparagopsis, and the effects that production of Asparagopsis and its use as a ruminant feed ingredient might have on atmospheric chemistry

    Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants

    Get PDF
    The agricultural production of ruminants is responsible for 24% of global methane emissions, contributing 39% of emissions of this greenhouse gas from the agricultural sector. Strategies to mitigate ruminant methanogenesis include the use of methanogen inhibitors. For example, the seaweeds Asparagopsis taxiformis and Asparagopsis armata included at low levels in the feed of cattle and sheep inhibit methanogenesis by up to 98%, with evidence of improvements in feed utilisation efficiency. This has resulted in an increasing interest in and demand for these seaweeds globally. In response, research is progressing rapidly to facilitate Asparagopsis cultivation at large scale, and to develop aquaculture production systems to enable a high quality and consistent supply chain. In addition to developing robust strategies for sustainable production, it is important to consider and evaluate the benefits and risks associated with its production and subsequent use as an antimethanogenic feed ingredient for ruminant livestock. This review focuses on the relevant ruminal biochemical pathways, degradation, and toxicological risks associated with bromoform (CHBr₃), the major active ingredient for inhibition of methanogenesis in Asparagopsis, and the effects that production of Asparagopsis and its use as a ruminant feed ingredient might have on atmospheric chemistry

    The molecular weight of ulvan affects the in vitro inflammatory response of a murine macrophage

    No full text
    © 2020 Elsevier B.V. Ulvan, a sulfated polysaccharide extracted from the green seaweed genus Ulva, has bioactive properties including an immunomodulating capacity. The immunomodulatory capacity of ulvan from Ulva ohnoi, however, has not been assessed in detail. We depolymerised purified ulvan from U. ohnoi to obtain a range of molecular weight fractions (Mw 7, 9, 13, 21, 209 kDa), which were characterised by constituent sugar analysis, SEC-MALLS, and NMR. Ulvan fractions contained 48.8–54.7 mol% rhamnose, 32.5–35.9 mol% glucuronic acid, 4.5–7.3 mol% iduronic acid, and 3.3–5.6 mol% xylose. 1H and 13C NMR was consistent with hydrolysis occurring at the anomeric centre without further modification to the oligosaccharide structure. The in vitro immunomodulatory effect of ulvan fractions was quantified by measuring levels of inflammatory-mediating signalling molecules released from LPS-stimulated RAW264.7 murine macrophages. All ulvan fractions showed no toxicity on RAW264.7 cells at concentrations below 100 μg mL−1 over 48 h. Secreted interleukin-10 and prostaglandin E2 demonstrated an anti-inflammatory effect by higher molecular weight ulvan fractions at 100 μg mL−1. To a lesser extent, these fractions also enhanced the LPS-induced inflammation through minor increases of IL-1β and IL-6. This study confirms that ulvan from U. ohnoi has a mild in vitro immunomodulatory effect.</jats:p

    The molecular weight of ulvan affects the in vitro inflammatory response of a murine macrophage

    No full text
    © 2020 Elsevier B.V. Ulvan, a sulfated polysaccharide extracted from the green seaweed genus Ulva, has bioactive properties including an immunomodulating capacity. The immunomodulatory capacity of ulvan from Ulva ohnoi, however, has not been assessed in detail. We depolymerised purified ulvan from U. ohnoi to obtain a range of molecular weight fractions (Mw 7, 9, 13, 21, 209 kDa), which were characterised by constituent sugar analysis, SEC-MALLS, and NMR. Ulvan fractions contained 48.8–54.7 mol% rhamnose, 32.5–35.9 mol% glucuronic acid, 4.5–7.3 mol% iduronic acid, and 3.3–5.6 mol% xylose. 1H and 13C NMR was consistent with hydrolysis occurring at the anomeric centre without further modification to the oligosaccharide structure. The in vitro immunomodulatory effect of ulvan fractions was quantified by measuring levels of inflammatory-mediating signalling molecules released from LPS-stimulated RAW264.7 murine macrophages. All ulvan fractions showed no toxicity on RAW264.7 cells at concentrations below 100 μg mL−1 over 48 h. Secreted interleukin-10 and prostaglandin E2 demonstrated an anti-inflammatory effect by higher molecular weight ulvan fractions at 100 μg mL−1. To a lesser extent, these fractions also enhanced the LPS-induced inflammation through minor increases of IL-1β and IL-6. This study confirms that ulvan from U. ohnoi has a mild in vitro immunomodulatory effect.</jats:p

    Anion-induced reconstitution of a self-assembling system to express a chloride-binding Co(10)L(15) pentagonal prism

    No full text
    Biochemical systems are adaptable, capable of reconstitution at all levels to achieve the functions associated with life. Synthetic chemical systems are more limited in their ability to reorganize to achieve new functions; they can reconfigure to bind an added substrate (template effect) or one binding event may modulate a receptor's affinity for a second substrate (allosteric effect). Here we describe a synthetic chemical system that is capable of structural reconstitution on receipt of one anionic signal (perchlorate) to create a tight binding pocket for another anion (chloride). The complex, barrel-like structure of the chloride receptor is templated by five perchlorate anions. This second-order templation phenomenon allows chemical networks to be envisaged that express more complex responses to chemical signals than is currently feasible
    corecore