3 research outputs found

    Longitudinal multi-centre brain imaging studies: guidelines and practical tips for accurate and reproducible imaging endpoints and data sharing

    Get PDF
    Abstract Background Research involving brain imaging is important for understanding common brain diseases. Study endpoints can include features and measures derived from imaging modalities, providing a benchmark against which other phenotypical data can be assessed. In trials, imaging data provide objective evidence of beneficial and adverse outcomes. Multi-centre studies increase generalisability and statistical power. However, there is a lack of practical guidelines for the set-up and conduct of large neuroimaging studies. Methods We address this deficit by describing aspects of study design and other essential practical considerations that will help researchers avoid common pitfalls and data loss. Results The recommendations are grouped into seven categories: (1) planning, (2) defining the imaging endpoints, developing an imaging manual and managing the workflow, (3) performing a dummy run and testing the analysis methods, (4) acquiring the scans, (5) anonymising and transferring the data, (6) monitoring quality, and (7) using structured data and sharing data. Conclusions Implementing these steps will lead to valuable and usable data and help to avoid imaging data wastage

    Cerebral lateralisation of first and second languages in bilinguals assessed using functional transcranial Doppler ultrasound

    Get PDF
    Background: Lateralised language processing is a well-established finding in monolinguals. In bilinguals, studies using fMRI have typically found substantial regional overlap between the two languages, though results may be influenced by factors such as proficiency, age of acquisition and exposure to the second language. Few studies have focused specifically on individual differences in brain lateralisation, and those that have suggested reduced lateralisation may characterise representation of the second language (L2) in some bilingual individuals. Methods: In Study 1, we used functional transcranial Doppler sonography (FTCD) to measure cerebral lateralisation in both languages in high proficiency bilinguals who varied in age of acquisition (AoA) of L2. They had German (N = 14) or French (N = 10) as their first language (L1) and English as their second language. FTCD was used to measure task-dependent blood flow velocity changes in the left and right middle cerebral arteries during phonological word generation cued by single letters. Language history measures and handedness were assessed through self-report. Study 2 followed a similar format with 25 Japanese (L1) /English (L2) bilinguals, with proficiency in their second language ranging from basic to advanced, using phonological and semantic word generation tasks with overt speech production. Results: In Study 1, participants were significantly left lateralised for both L1 and L2, with a high correlation (r = .70) in the size of laterality indices for L1 and L2. In Study 2, again there was good agreement between LIs for the two languages (r = .77 for both word generation tasks). There was no evidence in either study of an effect of age of acquisition, though the sample sizes were too small to detect any but large effects. Conclusion: In proficient bilinguals, there is strong concordance for cerebral lateralisation of first and second language as assessed by a verbal fluency task

    Literaturverzeichnis

    No full text
    corecore