11 research outputs found

    Mobility and potential bioavailability of traffic-derived trace metals in a ‘wet–dry’ tropical region, Northern Australia

    No full text
    The aqueous mobility and potential bioavailability of metals and metalloids in road runoff in a ‘wet–dry’ tropical location were assessed by analysing metal and\ud metalloid concentrations in particulate, total dissolved and\ud labile dissolved phases in runoff waters. Road-derived Al,\ud Cu, Pb, Sb and Zn concentrations were substantially elevated\ud in runoff when compared to receiving creek waters.\ud Median dissolved concentrations in road runoff exceeded\ud those in creek waters by up to an order of magnitude.\ud Leaching experiments of road sediments confirmed that\ud several metals and metalloids were released in high concentrations from road sediments. Labile Zn and Cu concentrations measured by diffusion gradients in thin films\ud (DGT) showed that almost all dissolved Zn and up to half\ud of dissolved Cu in runoff waters and in road sediment\ud leachate were potentially bioavailable. Comparisons of\ud dissolved metal concentrations in receiving waters affected\ud by road runoff with ecosystem guideline levels, indicated a\ud risk of reaching toxic levels of Cu and Zn in the receiving\ud waters in the absence of adequate treatment or dilution.\ud Low dilution rates of road runoff are likely to occur during\ud late ‘dry’ season/early ‘wet’ season storms which have the\ud potential to produce high metal concentrations derived\ud from long periods of accumulation of road sediment at a\ud time when creek flow rates are at their annual minimum
    corecore