41 research outputs found

    IKZF1 Deletions with COBL Breakpoints Are Not Driven by RAG-Mediated Recombination Events in Acute Lymphoblastic Leukemia

    Get PDF
    IKZF1 deletion (ΔIKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 ∆1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 ∆1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes ΔIKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with ΔIKZF1, but these rearrangements are not driven by RAG-mediated recombination

    Gene expression profile of cervical and skin tissues from human papillomavirus type 16 E6 transgenic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although K14E6 transgenic mice develop spontaneous tumors of the skin epithelium, no spontaneous reproductive tract malignancies arise, unless the transgenic mice were treated chronically with 17β-estradiol. These findings suggest that E6 performs critical functions in normal adult cervix and skin, highlighting the need to define E6-controlled transcriptional programs in these tissues.</p> <p>Methods</p> <p>We evaluated the expression profile of 14,000 genes in skin or cervix from young K14E6 transgenic mice compared with nontransgenic. To identify differentially expressed genes a linear model was implemented using R and the LIMMA package. Two criteria were used to select the set of relevant genes. First a set of genes with a Log-odds ≥ 3 were selected. Then, a hierarchical search of genes was based on Log Fold Changes.</p> <p>Results</p> <p>Microarray analysis identified a total of 676 and 1154 genes that were significantly up and down-regulated, respectively, in skin from K14E6 transgenic mice. On the other hand, in the cervix from K14E6 transgenic mice we found that only 97 and 252 genes were significantly up and down-regulated, respectively. One of the most affected processes in the skin from K14E6 transgenic mice was the cell cycle. We also found that skin from transgenic mice showed down-regulation of pro-apoptotic genes and genes related to the immune response. In the cervix of K14E6 transgenic mice, we could not find affected any gene related to the cell cycle and apoptosis pathways but did observe alterations in the expression of immune response genes. Pathways such as angiogenesis, cell junction and epidermis development, also were altered in their gene expression profiles in both tissues.</p> <p>Conclusion</p> <p>Expression of the HPV16 E6 oncoprotein in our model alters expression of genes that fell into several functional groups providing insights into pathways by which E6 deregulate cell cycle progression, apoptosis, the host resistance to infection and immune function, providing new opportunities for early diagnostic markers and therapeutic drug targets.</p

    HPV16 E7-Dependent Transformation Activates NHE1 through a PKA-RhoA-Iinduced Inhibition of p38alpha

    Get PDF
    Background: Neoplastic transformation originates from a large number of different genetic alterations. Despite this genetic variability, a common phenotype to transformed cells is cellular alkalinization. We have previously shown in human keratinocytes and a cell line in which transformation can be turned on and followed by the inducible expression of the E7 oncogene of human papillomavirus type 16 (HPV16), that intracellular alkalinization is an early and essential physiological event driven by the up-regulation of the Na/H-+(+) exchanger isoform 1 (NHE1) and is necessary for the development of other transformed phenotypes and the in vivo tumor formation in nude mice.Methodology: Here, we utilize these model systems to elucidate the dynamic sequence of alterations of the upstream signal transduction systems leading to the transformation-dependent activation of NHE1.Principal Findings: We observe that a down-regulation of p38 MAPK activity is a fundamental step in the ability of the oncogene to transform the cell. Further, using pharmacological agents and transient transfections with dominant interfering, constitutively active, phosphorylation negative mutants and siRNA strategy to modify specific upstream signal transduction components that link HPV16 E7 oncogenic signals to up-regulation of the NHE1, we demonstrate that the stimulation of NHE1 activity is driven by an early rise in cellular cAMP resulting in the down-stream inhibition of p38 MAPK via the PKA-dependent phosphorylation of the small G-protein, RhoA, and its subsequent inhibition.Conclusions: All together these data significantly improve our knowledge concerning the basic cellular alterations involved in oncogene-driven neoplastic transformation

    FLT3 overexpression in acute leukaemias: new insights into the search for molecular mechanisms

    No full text
    FLT3 overexpression is a recurrent event in various acute leukaemia subtypes. This transcriptional deregulation is important to define the prognostic risk for many patients. Of note, the molecular mechanisms leading to this gene upregulation are unknown for a substantial number of cases. In this Mini-Review, we highlight the role of FLT3 overexpression in acute leukaemia and discuss emerging mechanisms accounting for this upregulation. The benefits of using targeted therapy are also addressed in the overexpression context, posing other therapeutic possibilities based on state-of-the-art knowledge that could be considered for future research

    CRLF2 expression associates with ICN1 stabilization in T-cell acute lymphoblastic leukemia

    No full text
    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic malignancy with few molecular alterations showing a consensual prognostic value. CRLF2 overexpression was recently identified in high-risk T-ALL patients. For these cases, no genomic abnormality was found to be associated with CRLF2 overexpression. IKZF1 has been recently shown to be a direct transcriptional regulator of CRLF2 expression. Moreover, it is known that NOTCH1 antagonizes IKZF1 in T-ALL. In light of these pieces of evidence, we reasoned that IKZF1 binding perturbation and CRLF2 upregulation could be associated in T-ALL. We evaluated two independent series of pediatric T-ALL cases (PHOP, n&#x2009;=&#x2009;57 and TARGET, n&#x2009;=&#x2009;264) for the presence of common T-ALL molecular abnormalities, such as NOTCH1/FBXW7 mutations. We also assessed CRLF2 and IKZF1 gene expression. CRLF2 overexpression was observed in 14% (PHOP) and 16% (TARGET) of T-ALL patients. No correlation was found between mRNA expression of CRLF2 and IKZF1 in both cohorts. Interestingly, we show that patients with mutations affecting NOTCH1-PEST domain and/or FBXW7 had higher CRLF2 expression (P&#x2009;=&#x2009;.04). In summary, we demonstrate for the first time that only mutations resulting in ICN1 (intracellular domain of NOTCH1) stabilization are associated with CRLF2 overexpression
    corecore