6 research outputs found

    The Interplay between NF-kappaB and E2F1 Coordinately Regulates Inflammation and Metabolism in Human Cardiac Cells

    Get PDF
    Pyruvate dehydrogenase kinase 4 (PDK4) inhibition by nuclear factor-ÎșB (NF-ÎșB) is related to a shift towards increased glycolysis during cardiac pathological processes such as cardiac hypertrophy and heart failure. The transcription factors estrogen-related receptor-α (ERRα) and peroxisome proliferator-activated receptor (PPAR) regulate PDK4 expression through the potent transcriptional coactivator PPARÎł coactivator-1α (PGC-1α). NF-ÎșB activation in AC16 cardiac cells inhibit ERRα and PPARÎČ/ÎŽ transcriptional activity, resulting in reduced PGC-1α and PDK4 expression, and an enhanced glucose oxidation rate. However, addition of the NF-ÎșB inhibitor parthenolide to these cells prevents the downregulation of PDK4 expression but not ERRα and PPARÎČ/ÎŽ DNA binding activity, thus suggesting that additional transcription factors are regulating PDK4. Interestingly, a recent study has demonstrated that the transcription factor E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Given that NF-ÎșB may antagonize the transcriptional activity of E2F1 in cardiac myocytes, we sought to study whether inflammatory processes driven by NF-ÎșB can downregulate PDK4 expression in human cardiac AC16 cells through E2F1 inhibition. Protein coimmunoprecipitation indicated that PDK4 downregulation entailed enhanced physical interaction between the p65 subunit of NF-ÎșB and E2F1. Chromatin immunoprecipitation analyses demonstrated that p65 translocation into the nucleus prevented the recruitment of E2F1 to the PDK4 promoter and its subsequent E2F1-dependent gene transcription. Interestingly, the NF-ÎșB inhibitor parthenolide prevented the inhibition of E2F1, while E2F1 overexpression reduced interleukin expression in stimulated cardiac cells. Based on these findings, we propose that NF-ÎșB acts as a molecular switch that regulates E2F1-dependent PDK4 gene transcription

    Evaluating the Photoprotective Effects of Ochre on Human Skin by In Vivo SPF Assessment: Implications for Human Evolution, Adaptation and Dispersal

    No full text
    corecore