674 research outputs found
Human behavior in Prisoner's Dilemma experiments suppresses network reciprocity
During the last few years, much research has been devoted to strategic
interactions on complex networks. In this context, the Prisoner's Dilemma has
become a paradigmatic model, and it has been established that imitative
evolutionary dynamics lead to very different outcomes depending on the details
of the network. We here report that when one takes into account the real
behavior of people observed in the experiments, both at the mean-field level
and on utterly different networks the observed level of cooperation is the
same. We thus show that when human subjects interact in an heterogeneous mix
including cooperators, defectors and moody conditional cooperators, the
structure of the population does not promote or inhibit cooperation with
respect to a well mixed population.Comment: 5 Pages including 4 figures. Submitted for publicatio
Mesoscopic structure conditions the emergence of cooperation on social networks
We study the evolutionary Prisoner's Dilemma on two social networks obtained
from actual relational data. We find very different cooperation levels on each
of them that can not be easily understood in terms of global statistical
properties of both networks. We claim that the result can be understood at the
mesoscopic scale, by studying the community structure of the networks. We
explain the dependence of the cooperation level on the temptation parameter in
terms of the internal structure of the communities and their interconnections.
We then test our results on community-structured, specifically designed
artificial networks, finding perfect agreement with the observations in the
real networks. Our results support the conclusion that studies of evolutionary
games on model networks and their interpretation in terms of global properties
may not be sufficient to study specific, real social systems. In addition, the
community perspective may be helpful to interpret the origin and behavior of
existing networks as well as to design structures that show resilient
cooperative behavior.Comment: Largely improved version, includes an artificial network model that
fully confirms the explanation of the results in terms of inter- and
intra-community structur
Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses
Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between the two proteins, they have a similar α-helical domain, the structural signature shared with the lineage of the dsRNA bluetongue virus-like viruses. Domain insertions in P2 and P4 preferential sites provide additional functions at the capsid outer surface, probably related to enzyme activity. The P2 insertion has a fold similar to that of gelsolin and profilin, two actin-binding proteins with a function in cytoskeleton metabolism, whereas the P4 insertion suggests protease activity involved in cleavage of the P2 383-residue C-terminal region, absent in the mature viral particle. Our results indicate that the intimate virus-fungus partnership has altered the capsid genome-protective and/or receptor-binding functions. Fungal virus evolution has tended to allocate enzyme activities to the virus capsid outer surface
Wisdom of groups promotes cooperation in evolutionary social dilemmas
Whether or not to change strategy depends not only on the personal success of
each individual, but also on the success of others. Using this as motivation,
we study the evolution of cooperation in games that describe social dilemmas,
where the propensity to adopt a different strategy depends both on individual
fitness as well as on the strategies of neighbors. Regardless of whether the
evolutionary process is governed by pairwise or group interactions, we show
that plugging into the "wisdom of groups" strongly promotes cooperative
behavior. The more the wider knowledge is taken into account the more the
evolution of defectors is impaired. We explain this by revealing a dynamically
decelerated invasion process, by means of which interfaces separating different
domains remain smooth and defectors therefore become unable to efficiently
invade cooperators. This in turn invigorates spatial reciprocity and
establishes decentralized decision making as very beneficial for resolving
social dilemmas.Comment: 8 two-column pages, 7 figures; accepted for publication in Scientific
Report
Optimal interdependence between networks for the evolution of cooperation
Recent research has identified interactions between networks as crucial for the outcome of evolutionary
games taking place on them. While the consensus is that interdependence does promote cooperation by
means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we
here address the question just how much interdependence there should be. Intuitively, one might assume
the more the better. However, we show that in fact only an intermediate density of sufficiently strong
interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate
interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links
between the networks, and the independent formation of cooperative patterns on each individual network.
Presented results are robust to variations of the strategy updating rule, the topology of interdependent
networks, and the governing social dilemma, thus suggesting a high degree of universality
Interdependent network reciprocity in evolutionary games
Besides the structure of interactions within networks, also the interactions between networks are of the outmost
importance. We therefore study the outcome of the public goods game on two interdependent networks that are
connected by means of a utility function, which determines how payoffs on both networks jointly influence the
success of players in each individual network. We show that an unbiased coupling allows the spontaneous
emergence of interdependent network reciprocity, which is capable to maintain healthy levels of public
cooperation even in extremely adverse conditions. The mechanism, however, requires simultaneous formation of
correlated cooperator clusters on both networks. If this does not emerge or if the coordination process is
disturbed, network reciprocity fails, resulting in the total collapse of cooperation. Network interdependence can
thus be exploited effectively to promote cooperation past the limits imposed by isolated networks, but only if the
coordination between the interdependent networks is not disturbe
If players are sparse social dilemmas are too: Importance of percolation for evolution of cooperation
Spatial reciprocity is a well known tour de force of cooperation promotion. A
thorough understanding of the effects of different population densities is
therefore crucial. Here we study the evolution of cooperation in social
dilemmas on different interaction graphs with a certain fraction of vacant
nodes. We find that sparsity may favor the resolution of social dilemmas,
especially if the population density is close to the percolation threshold of
the underlying graph. Regardless of the type of the governing social dilemma as
well as particularities of the interaction graph, we show that under pairwise
imitation the percolation threshold is a universal indicator of how dense the
occupancy ought to be for cooperation to be optimally promoted. We also
demonstrate that myopic updating, due to the lack of efficient spread of
information via imitation, renders the reported mechanism dysfunctional, which
in turn further strengthens its foundations.Comment: 6 two-column pages, 5 figures; accepted for publication in Scientific
Reports [related work available at http://arxiv.org/abs/1205.0541
Different reactions to adverse neighborhoods in games of cooperation
In social dilemmas, cooperation among randomly interacting individuals is
often difficult to achieve. The situation changes if interactions take place in
a network where the network structure jointly evolves with the behavioral
strategies of the interacting individuals. In particular, cooperation can be
stabilized if individuals tend to cut interaction links when facing adverse
neighborhoods. Here we consider two different types of reaction to adverse
neighborhoods, and all possible mixtures between these reactions. When faced
with a gloomy outlook, players can either choose to cut and rewire some of
their links to other individuals, or they can migrate to another location and
establish new links in the new local neighborhood. We find that in general
local rewiring is more favorable for the evolution of cooperation than
emigration from adverse neighborhoods. Rewiring helps to maintain the diversity
in the degree distribution of players and favors the spontaneous emergence of
cooperative clusters. Both properties are known to favor the evolution of
cooperation on networks. Interestingly, a mixture of migration and rewiring is
even more favorable for the evolution of cooperation than rewiring on its own.
While most models only consider a single type of reaction to adverse
neighborhoods, the coexistence of several such reactions may actually be an
optimal setting for the evolution of cooperation.Comment: 12 pages, 5 figures; accepted for publication in PLoS ON
Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners
Taxonomy relies greatly on morphology to discriminate groups. Computerized geometric morphometric methods for quantitative shape analysis measure, test and visualize differences in form in a highly effective, reproducible, accurate and statistically powerful way. Plant leaves are commonly used in taxonomic analyses and are particularly suitable to landmark based geometric morphometrics. However, botanists do not yet seem to have taken advantage of this set of methods in their studies as much as zoologists have done. Using free software and an example dataset from two geographical populations of sessile oak leaves, we describe in detailed but simple terms how to: a) compute size and shape variables using Procrustes methods; b) test measurement error and the main levels of variation (population and trees) using a hierachical design; c) estimate the accuracy of group discrimination; d) repeat this estimate after controlling for the effect of size differences on shape (i.e., allometry). Measurement error was completely negligible; individual variation in leaf morphology was large and differences between trees were generally bigger than within trees; differences between the two geographic populations were small in both size and shape; despite a weak allometric trend, controlling for the effect of size on shape slighly increased discrimination accuracy. Procrustes based methods for the analysis of landmarks were highly efficient in measuring the hierarchical structure of differences in leaves and in revealing very small-scale variation. In taxonomy and many other fields of botany and biology, the application of geometric morphometrics contributes to increase scientific rigour in the description of important aspects of the phenotypic dimension of biodiversity. Easy to follow but detailed step by step example studies can promote a more extensive use of these numerical methods, as they provide an introduction to the discipline which, for many biologists, is less intimidating than the often inaccessible specialistic literature
Baryonic symmetries and M5 branes in the AdS_4/CFT_3 correspondence
We study U(1) symmetries dual to Betti multiplets in the AdS_4/CFT_3
correspondence for M2 branes at Calabi-Yau four-fold singularities. Analysis of
the boundary conditions for vector fields in AdS_4 allows for a choice where
wrapped M5 brane states carrying non-zero charge under such symmetries can be
considered. We begin by focusing on isolated toric singularities without
vanishing six-cycles, and study in detail the cone over Q^{111}. The boundary
conditions considered are dual to a CFT where the gauge group is U(1)^2 x
SU(N)^4. We find agreement between the spectrum of gauge-invariant
baryonic-type operators in this theory and wrapped M5 brane states. Moreover,
the physics of vacua in which these symmetries are spontaneously broken
precisely matches a dual gravity analysis involving resolutions of the
singularity, where we are able to match condensates of the baryonic operators,
Goldstone bosons and global strings. We also argue more generally that theories
where the resolutions have six-cycles are expected to receive non-perturbative
corrections from M5 brane instantons. We give a general formula relating the
instanton action to normalizable harmonic two-forms, and compute it explicitly
for the Q^{222} example. The holographic interpretation of such instantons is
currently unclear.Comment: 92 pages, 10 figure
- …