51 research outputs found

    Paclitaxel and concomitant radiotherapy in high-risk endometrial cancer patients: preliminary findings

    Get PDF
    BACKGROUND: There is still much debate about the best adjuvant therapy after surgery for endometrial cancer (EC) and there are no current guidelines. Radiotherapy (RT) alone does not seem to improve overall survival. We investigated whether concomitant Paclitaxel (P) and RT gave better clinical results. METHODS: Twenty-three patients with high-risk EC (stage IIB, IIIA, IIIC or IC G3 without lymphadenectomy or with aneuploid tumor) underwent primary surgery and were then referred for adjuvant therapy. P was given at a dose of 60 mg/m2 once weekly for five weeks during RT, which consisted of a total radiation dose of 50.4 Gy. Three further weekly cycles of P at a dose of 80 mg/m2 were given at the end of RT. Overall survival and disease-free survival were calculated from the time of surgery. Patterns of failure were recorded by the sites of failure. RESULTS: A total of 157 cycles of P were administered both during radiotherapy and consolidation chemotherapy. Relapses occurred in five patients (21.7%). Median time to recurrence was 18.6 months (range 3–28). Survival rate for all the patients was 78.2%. Overall survival for the patients who completed chemo-radiation was of 81%. In this group median time to recurrence was 19.2 months (range 3–28). All recurrences were outside the radiation field. Mortality rate was 14.2%. CONCLUSION: This small series demonstrates pelvic radiotherapy in combination with weakly P followed by three consolidation chemotherapy cycles as an effective combined approach in high risk endometrial carcinoma patients

    Improved Cellular Specificity of Plasmonic Nanobubbles versus Nanoparticles in Heterogeneous Cell Systems

    Get PDF
    The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level

    Smooth thin film C/diamond membranes with controllable optical band gaps

    No full text
    Mixed phase carbon-diamond films which consist of small grain diamond in an a:C matrix were deposited on polished Si using a radio frequency CH4 Ar plasma CVD deposition process. Ellipsometry, surface profilometry, scanning electron microscopy (SEM) and spectrophotometry were used to analyse these films. Film thicknesses were typically 50-100 nm with a surface roughness of ± 30 A ̊ over centimetre length scans. SEM analysis showed the films were smooth and pinhole free. The Si substrate was etched using backside masking and a directional etch to give taut carbon-diamond membranes on a Si grid. Spectrophotometry was used to analyse the optical properties of these membranes. Band gap control was achieved by varying the dc bias of the deposition process. Band gaps of 1.2 eV to 4.0 eV were achieved in these membranes. A technique for controlling the compressive stress in the films, which can range from 0.02 to 7.5 GPa has been employed. This has allowed the fabrication of thin, low stress, high band gap membranes that are extremely tough and chemically inert. Such carbon-diamond membranes seem promising for applications as windows in analytical instruments. © 1992
    • …
    corecore