36 research outputs found

    Flux and field line conservation in 3--D nonideal MHD flows: Remarks about criteria for 3--D reconnection without magnetic neutral points

    Full text link
    We make some remarks on reconnection in plasmas and want to present some calculations related to the problem of finding velocity fields which conserve magnetic flux or at least magnetic field lines. Hereby we start from views and definitions of ideal and non-ideal flows on one hand, and of reconnective and non-reconnective plasma dynamics on the other hand. Our considerations give additional insights into the discussion on violations of the frozen--in field concept which started recently with the papers by Baranov & Fahr (2003a; 2003b). We find a correlation between the nonidealness which is given by a generalized form of the Ohm's law and a general transporting velocity, which is field line conserving.Comment: 9 pages, 2 figures, submitted to Solar Physic

    On the thickness of a mildly relativistic collisional shock wave

    Full text link
    We consider an imperfect relativistic fluid which develops a shock wave and discuss its structure and thickness, taking into account the effects of viscosity and heat conduction in the form of sound absorption. The junction conditions and the non linear equations describing the evolution of the shock are derived with the corresponding Newtonian limit discussed in detail. As happens in the non relativistic regime, the thickness is inversely proportional to the discontinuity in the pressure, but new terms of purely relativistic origin are present. Particularizing for a polytropic gas, it is found that the pure viscous relativistic shock is thicker than its nonrelativistic counterpart, while the opposite holds for pure heat conduction.Comment: 11 pages, no figures, title changed, improved introduction and discussion. New author adde

    Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior

    Full text link
    Recent overwhelming evidences show that the sun strongly influences the Earth's climate and environment. Moreover existence of life on this Earth mainly depends upon the sun's energy. Hence, understanding of physics of the sun, especially the thermal, dynamic and magnetic field structures of its interior, is very important. Recently, from the ground and space based observations, it is discovered that sun oscillates near 5 min periodicity in millions of modes. This discovery heralded a new era in solar physics and a separate branch called helioseismology or seismology of the sun has started. Before the advent of helioseismology, sun's thermal structure of the interior was understood from the evolutionary solution of stellar structure equations that mimicked the present age, mass and radius of the sun. Whereas solution of MHD equations yielded internal dynamics and magnetic field structure of the sun's interior. In this presentation, I review the thermal, dynamic and magnetic field structures of the sun's interior as inferred by the helioseismology.Comment: To be published in the proceedings of the meeting "3rd International Conference on Current Developments in Atomic, Molecular, Optical and Nano Physics with Applications", December 14-16, 2011, New Delhi, Indi

    Advances in Global and Local Helioseismology: an Introductory Review

    Full text link
    Helioseismology studies the structure and dynamics of the Sun's interior by observing oscillations on the surface. These studies provide information about the physical processes that control the evolution and magnetic activity of the Sun. In recent years, helioseismology has made substantial progress towards the understanding of the physics of solar oscillations and the physical processes inside the Sun, thanks to observational, theoretical and modeling efforts. In addition to the global seismology of the Sun based on measurements of global oscillation modes, a new field of local helioseismology, which studies oscillation travel times and local frequency shifts, has been developed. It is capable of providing 3D images of the subsurface structures and flows. The basic principles, recent advances and perspectives of global and local helioseismology are reviewed in this article.Comment: 86 pages, 46 figures; "Pulsation of the Sun and Stars", Lecture Notes in Physics, Vol. 832, Rozelot, Jean-Pierre; Neiner, Coralie (Eds.), 201

    Significant reduction of fungal disease symptoms in transgenic lupin (Lupinus angustifolius) expressing the anti-apoptotic baculovirus genep35

    Get PDF
    Narrow-leafed lupin (NLL; Lupinus angustifolius) is a recently domesticated but anciently propagated crop with significant value in rotation with cereals in Mediterranean climates. However, several fungal pathogens, traditionally termed necrotrophs, severely affect broad-acre production and there is limited genetic resistance in the NLL germplasm pool. Symptoms of many of these diseases appear as localized areas of dead cells exhibiting markers of programmed cell death. Based on our previous research, we hypothesized that engineered expression of the baculovirus anti-apoptotic p35 gene might reduce symptoms of these diseases. Using Agrobacterium tumefaciens-mediated transformation of a cultivar highly susceptible to several pathogens, 14 independent NLL lines containing both the p35 and bar genes were obtained (p35-NLL). Integration and expression of the transgenes were confirmed by polymerase chain reaction (PCR), progeny testing, Southern blot, Northern blot and reverse transcriptase-PCR analyses. Fecundity and nodulation were not altered in these lines. Third or fourth generation p35-NLL lines were challenged with necrotrophic fungal pathogens (anthracnose in stem and leaf, and Pleiochaeta root rot and leaf brown spot) in controlled environment conditions. Several p35-NLL lines had significantly reduced disease symptoms. Interestingly, as with natural resistance, no single line was improved for all three diseases which possibly reflecting spatial variation of p35 expression in planta. These data support an alternative molecular definition for 'necrotrophic disease' in plants and suggest new routes for achieving resistance against a range of pathogens

    Interspecific reproductive barriers and genomic similarity among the rough-seeded Lupinus species

    No full text
    The nature of reproductive barriers and meiotic behaviour of chromosomes were studied in interspecific hybrids among the six rough-seeded Lupinus species. Out of 30 different interspecific crosses attempted in all possible combinations, eight produced viable F, seeds. These successful crosses involved L. cosentinii, L. digitatus, L. atlanticus and L. pilosus. Crosses of L. princei with other species resulted in shrivelled F, seed in all combinations. In contrast to previous reports, crosses of L. palaestinus with all other rough-seeded lupins were incompatible as no F1 hybrids were obtained. Barriers to interspecific reproduction were identified as nucleo-cytoplasmic and embryo-endosperm incompatibility in unsuccessful crosses, and chromosomal imbalances in F1 hybrids. Gene transfer is possible among L. cosentinii, L. digitatus and L. atlanticus, which produced F2 seed. Patterns of chromosome configurations in F1 meiotic cells suggested that these species have at least two genomes partially in common, but include inversions and translocations. The genome of L. atlanticus is closer to L. digitatus than to L. cosentinii, and that of L. pilosus is closer to L. atlanticus than to L. cosentinii. L. princei appears to have an isolated genome within the rough-seeded Lupinus species

    Pro-embryos of Lupinus spp. produced from isolated microspore culture

    No full text
    Several species of lupin (Lupinus spp.) are grown in Australia as crop and pasture plants. Lupin breeding, and legume breeding in general, is constrained by the inability to produce doubled haploid (DH) plants, which would accelerate the selection and release of new varieties. This technology is still in the developmental phase for legumes, although other major grain crops such as wheat, barley, and canola successfully use DHs on a commercial scale. A new, reproducible method of microspore culture that leads to cell division and pro-embryos in lupin is reported here. Microspores at the late uninucleate stage of development are mechanically isolated from lupin buds and embryogenesis induced by a combined heat shock and sucrose starvation stress treatment. Addition of further components to the growth medium promotes division of up to 50% of microspores to ≄16 cells within 24 h. Further development of these multicellular structures or pro-embryos appears to be limited by the rigid outer exine layer, which needs to rupture for continued cell division to the globular embryo stage. Further research is required to break this barrier to development of haploid lupin embryos
    corecore