3,735 research outputs found
Color Intensity Projections: A simple way to display changes in astronomical images
To detect changes in repeated astronomical images of the same field of view
(FOV), a common practice is to stroboscopically switch between the images.
Using this method, objects that are changing in location or intensity between
images are easier to see because they are constantly changing. A novel display
method, called arrival time color intensity projections (CIPs), is presented
that combines any number of grayscale images into a single color image on a
pixel by pixel basis. Any values that are unchanged over the grayscale images
look the same in the color image. However, pixels that change over the
grayscale image have a color saturation that increases with the amount of
change and a hue that corresponds to the timing of the changes. Thus objects
moving in the grayscale images change from red to green to blue as they move
across the color image. Consequently, moving objects are easier to detect and
assess on the color image than on the grayscale images. A sequence of images of
a comet plunging into the sun taken by the SOHO satellite (NASA/ESA) and Hubble
Space Telescope images of a trans-Neptunian object (TNO) are used to
demonstrate the method.Comment: 9 pages, 2 figures. Accepted for publication in Publications of the
Astronomical Society of the Pacific. The quality of figure 1 been improved
from the previous posted versio
Adaptive Cluster Expansion for Inferring Boltzmann Machines with Noisy Data
We introduce a procedure to infer the interactions among a set of binary
variables, based on their sampled frequencies and pairwise correlations. The
algorithm builds the clusters of variables contributing most to the entropy of
the inferred Ising model, and rejects the small contributions due to the
sampling noise. Our procedure successfully recovers benchmark Ising models even
at criticality and in the low temperature phase, and is applied to
neurobiological data.Comment: Accepted for publication in Physical Review Letters (2011
Asynchronous multiple-access channel capacity
The capacity region for the discrete memoryless multiple-access channel without time synchronization at the transmitters and receivers is shown to be the same as the known capacity region for the ordinary multiple-access channel. The proof utilizes time sharing of two optimal codes for the ordinary multiple-access channel and uses maximum likelihood decoding over shifts of the hypothesized transmitter words
Redundancy of classical and quantum correlations during decoherence
We analyze the time dependence of entanglement and total correlations between
a system and fractions of its environment in the course of decoherence. For the
quantum Brownian motion model we show that the entanglement and total
correlations have rather different dependence on the size of the environmental
fraction. Redundancy manifests differently in both types of correlations and
can be related with induced--classicality. To study this we introduce a new
measure of redundancy and compare it with the existing one.Comment: 6 pages, 4 figure
Kinetics and thermodynamics of first-order Markov chain copolymerization
We report a theoretical study of stochastic processes modeling the growth of
first-order Markov copolymers, as well as the reversed reaction of
depolymerization. These processes are ruled by kinetic equations describing
both the attachment and detachment of monomers. Exact solutions are obtained
for these kinetic equations in the steady regimes of multicomponent
copolymerization and depolymerization. Thermodynamic equilibrium is identified
as the state at which the growth velocity is vanishing on average and where
detailed balance is satisfied. Away from equilibrium, the analytical expression
of the thermodynamic entropy production is deduced in terms of the Shannon
disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is
recovered in the fully irreversible growth regime. The theory also applies to
Bernoullian chains in the case where the attachment and detachment rates only
depend on the reacting monomer
Entanglement combing
We show that all multi-partite pure states can, under local operations, be
transformed into bi-partite pairwise entangled states in a "lossless fashion":
An arbitrary distinguished party will keep pairwise entanglement with all other
parties after the asymptotic protocol - decorrelating all other parties from
each other - in a way that the degree of entanglement of this party with
respect to the rest will remain entirely unchanged. The set of possible
entanglement distributions of bi-partite pairs is also classified. Finally, we
point out several applications of this protocol as a useful primitive in
quantum information theory.Comment: 5 pages, 1 figure, replaced with final versio
Maximum Entropy Linear Manifold for Learning Discriminative Low-dimensional Representation
Representation learning is currently a very hot topic in modern machine
learning, mostly due to the great success of the deep learning methods. In
particular low-dimensional representation which discriminates classes can not
only enhance the classification procedure, but also make it faster, while
contrary to the high-dimensional embeddings can be efficiently used for visual
based exploratory data analysis.
In this paper we propose Maximum Entropy Linear Manifold (MELM), a
multidimensional generalization of Multithreshold Entropy Linear Classifier
model which is able to find a low-dimensional linear data projection maximizing
discriminativeness of projected classes. As a result we obtain a linear
embedding which can be used for classification, class aware dimensionality
reduction and data visualization. MELM provides highly discriminative 2D
projections of the data which can be used as a method for constructing robust
classifiers.
We provide both empirical evaluation as well as some interesting theoretical
properties of our objective function such us scale and affine transformation
invariance, connections with PCA and bounding of the expected balanced accuracy
error.Comment: submitted to ECMLPKDD 201
Nonlocal resources in the presence of Superselection Rules
Superselection rules severely alter the possible operations that can be
implemented on a distributed quantum system. Whereas the restriction to local
operations imposed by a bipartite setting gives rise to the notion of
entanglement as a nonlocal resource, the superselection rule associated with
particle number conservation leads to a new resource, the \emph{superselection
induced variance} of local particle number. We show that, in the case of pure
quantum states, one can quantify the nonlocal properties by only two additive
measures, and that all states with the same measures can be asymptotically
interconverted into each other by local operations and classical communication.
Furthermore we discuss how superselection rules affect the concepts of
majorization, teleportation and mixed state entanglement.Comment: 4 page
- …