25 research outputs found

    Fermentation of Arabinoxylan-Oligosaccharides, Oligofructose and their Monomeric Sugars by Hindgut Bacteria from Siberian Sturgeon and African Catfish in Batch Culture in vitro

    Get PDF
    The in vitro fermentation of two Non-Digestible Oligosaccharide (NDO) preparations, Arabinoxylan- Oligosaccharides (AXOS) and Oligofructose (OF), and their respective monomeric sugars, xylose and fructose, were investigated by hindgut microbiota of two major aquaculture fish species, Siberian sturgeon (Acipenser baerii) and African catfish (Clarias gariepinus). Inocula from the hindgut of both fish species were incubated for 48 h in bottles containing 1.0% of one of four substrates, i.e. AXOS, OF, xylose or fructose. Amounts and profiles of produced Short-Chain Fatty Acids (SCFAs) differed between the two fish species and substrates. The hindgut microbiota of Siberian sturgeon has a higher fermentation capacity than the microbiota from African catfish. Xylose was much easier fermented than AXOS by microbiota from Siberian sturgeon whereas OF was quicker fermented than fructose with African catfish inoculum. The SCFAs were dominated by acetic acid for both fish species and for all substrates. Fermentation of OF and fructose by hindgut microbiota of Siberian sturgeon also yielded high amounts of butyric and branched-chain fatty acids after 48 h incubation. Results of this study suggest that AXOS, OF, and their monomeric sugars have an impact on microbial fermentation activity of hindgut microbiota from Siberian sturgeon and African catfish in a substrate and species dependent manner

    Reaction rate for carbon burning in massive stars

    Get PDF
    Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for C12+C12 fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of C12+C12 fusion cross sections where these backgrounds have been minimized. It is found that the astrophysical S factor exhibits a maximum around Ecm=3.5-4.0 MeV, which leads to a reduction of the previously predicted astrophysical reaction rate

    Fusion measurements of 12C+12C at energies of astrophysical interest

    Get PDF
    The cross section of the 12C+12C fusion reaction at low energies is of paramount importance for models of stellar nucleosynthesis in different astrophysical scenarios, such as Type Ia supernovae and Xray superbursts, where this reaction is a primary route for the production of heavier elements. In a series of experiments performed at Argonne National Laboratory, using Gammasphere and an array of Silicon detectors, measurements of the fusion cross section of 12C+12C were successfully carried out with the Îł and charged-particle coincidence technique in the center-of-mass energy range of 3-5 MeV. These were the first background-free fusion cross section measurements for 12C+12C at energies of astrophysical interest. Our results are consistent with previous measurements in the high-energy region; however, our lowest energy measurement indicates a fusion cross section slightly lower than those obtained with other techniques

    How well do we understand the reaction rate of C burning?

    Get PDF
    Carbon burning plays a crucial role in stellar evolution, where this reaction is an important route for the production of heavier elements. A particle-Îł coincidence technique that minimizes the backgrounds to which this reaction is subject and provides reliable cross sections has been used at the Argonne National Laboratory to measure fusion cross-sections at deep sub-barrier energies in the 12C+12C system. The corresponding excitation function has been extracted down to a cross section of about 6 nb. This indicates the existence of a broad S-factor maximum for this system. Experimental results are presented and discussed

    Study of the fusion reaction 12C + 12C at low beam energy

    Get PDF
    In this article we discuss two aspects related to the 12C + 12C fusion reaction at low energies for carbon burning in supermassive stars. First we present plausible arguments for the notion that the observed resonance structures at the lowest measured energies arise from the relatively large spacing and narrow width of 24Mg compound levels at the corresponding excitation energy region. We thus point out that the Incoming Wave Boundary Condition is inappropriate for calculating the fusion cross section under these situations. Secondly, we report on a particle-Îł coincidence technique that has been used for the first time to measure the fusion cross section in the system 12C + 12C at low beam energies. Based on these results, it should be possible to measure this important fusion cross section down to the 10 pb level within a reasonable length of time

    Reaction rate for carbon burning in massive stars

    Get PDF
    Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for C12+C12 fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of C12+C12 fusion cross sections where these backgrounds have been minimized. It is found that the astrophysical S factor exhibits a maximum around Ecm=3.5-4.0 MeV, which leads to a reduction of the previously predicted astrophysical reaction rate

    Isolation and characterization of six microsatellite loci in the larch budmoth Zeiraphera diniana (Lepidoptera: Tortricidae)

    No full text
    Six microsatellite markers were developed for the larch budmoth Zeiraphera diniana Guénée 1845, using two enrichment protocols. The number of alleles ranged from 3 to 15 per locus and observed heterozygosities ranged from 0.09 to 0.98 for the 69 individuals genotyped. Using these markers significant genetic differentiation between one population from Poland and samples from Alpine populations in France and Switzerland (overall FST = 0.0298) was detected. However, the two Alpine samples did not differ significantly. These microsatellite markers are valuable tools for studying the population genetics of Zeiraphera diniana
    corecore