2,541 research outputs found
Absorption on horizon-wrapped branes
We compute the absorption cross section of space-time scalars on a static D2
rane, in global coordinates, wrapped on the S^2 of an AdS_2 X S^2 X CY_3
geometry. We discuss its relevance for the construction of the dual quantum
mechanics of Calabi-Yau black holes.Comment: 18 pages, 2 figure
Lack of effect of adenosine on the function of rodent osteoblasts and osteoclasts in vitro
Extracellular ATP, signalling through P2 receptors, exerts well-documented effects on bone cells, inhibiting mineral deposition by osteoblasts and stimulating the formation and resorptive activity of osteoclasts. The aims of this study were to determine the potential osteotropic effects of adenosine, the hydrolysis product of ATP, on primary bone cells in vitro. We determined the effect of exogenous adenosine on (1) the growth, alkaline phosphatase (TNAP) activity and bone-forming ability of osteoblasts derived from the calvariae of neonatal rats and mice and the marrow of juvenile rats and (2) the formation and resorptive activity of osteoclasts from juvenile mouse marrow. Reverse transcription polymerase chain reaction (RT-PCR) analysis showed marked differences in the expression of P1 receptors in osteoblasts from different sources. Whilst mRNA for the A1 and A2B receptors was expressed by all primary osteoblasts, A2A receptor expression was limited to rat bone marrow and mouse calvarial osteoblasts and the A3 receptor to rat bone marrow osteoblasts. We found that adenosine had no detectable effects on cell growth, TNAP activity or bone formation by rodent osteoblasts in vitro. The analogue 2-chloroadenosine, which is hydrolysed more slowly than adenosine, had no effects on rat or mouse calvarial osteoblasts but increased TNAP activity and bone formation by rat bone marrow osteoblasts by 30–50 % at a concentration of 1 μM. Osteoclasts were found to express the A2A, A2B and A3 receptors; however, neither adenosine (≤100 μM) nor 2-chloroadenosine (≤10 μM) had any effect on the formation or resorptive activity of mouse osteoclasts in vitro. These results suggest that adenosine, unlike ATP, is not a major signalling molecule in the bone
PENGGUNAAN SISTEM STRUKTUR RANGKA ATAP TIPE PELENGKUNG 3 SENDI
So far, the system of the roof structure of residential and office buildings is dominated by conventional frame types. The use of a 3-joint arch structure system is only familiar to warehouse buildings and the like. The purpose of this study is to identify the feasibility of using type 3 joint arches on the roof of a residential building. The research scenario is focused on calculations using SNI 7973-2013, namely Design Specifications for Wooden Construction and Specific Static Structural Analysis Methods for 3 Joint Arch Structures based on the length of the truss span model, which is 9 m. The calculation result indicates that 1). The 3-joint curve type is worth using as it proves stable and safe 2). The distance between the truss of the roof truss affects the dimensions of the truss. The implication is that the construction of the roof of a residential house can use a 3-joint arch structure system while the basic material for modeling uses Code E20 wood material with Quality B, depending on the length of the span and the slope of the roof
The a-theorem and conformal symmetry breaking in holographic RG flows
We study holographic models describing an RG flow between two fixed points
driven by a relevant scalar operator. We show how to introduce a spurion field
to restore Weyl invariance and compute the anomalous contribution to the
generating functional in even dimensional theories. We find that the
coefficient of the anomalous term is proportional to the difference of the
conformal anomalies of the UV and IR fixed points, as expected from anomaly
matching arguments in field theory. For any even dimensions the coefficient is
positive as implied by the holographic a-theorem. For flows corresponding to
spontaneous breaking of conformal invariance, we also compute the two-point
functions of the energy-momentum tensor and the scalar operator and identify
the dilaton mode. Surprisingly we find that in the simplest models with just
one scalar field there is no dilaton pole in the two-point function of the
scalar operator but a stronger singularity. We discuss the possible
implications.Comment: 50 pages. v2: minor changes, added references, extended discussion.
v3: we have clarified some of the calculations and assumptions, results
unchanged. v4: published version in JHE
Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions
We consider the conformal field theory of N complex massless scalars in 2+1
dimensions, coupled to a U(N) Chern-Simons theory at level k. This theory has a
't Hooft large N limit, keeping fixed \lambda = N/k. We compute some
correlation functions in this theory exactly as a function of \lambda, in the
large N (planar) limit. We show that the results match with the general
predictions of Maldacena and Zhiboedov for the correlators of theories that
have high-spin symmetries in the large N limit. It has been suggested in the
past that this theory is dual (in the large N limit) to the Legendre transform
of the theory of fermions coupled to a Chern-Simons gauge field, and our
results allow us to find the precise mapping between the two theories. We find
that in the large N limit the theory of N scalars coupled to a U(N)_k
Chern-Simons theory is equivalent to the Legendre transform of the theory of k
fermions coupled to a U(k)_N Chern-Simons theory, thus providing a bosonization
of the latter theory. We conjecture that perhaps this duality is valid also for
finite values of N and k, where on the fermionic side we should now have (for
N_f flavors) a U(k)_{N-N_f/2} theory. Similar results hold for real scalars
(fermions) coupled to the O(N)_k Chern-Simons theory.Comment: 49 pages, 16 figures. v2: added reference
Testing the excitation/inhibition imbalance hypothesis in a mouse model of the autism spectrum disorder: in vivo neurospectroscopy and molecular evidence for regional phenotypes
Background
Excitation/inhibition (E/I) imbalance remains a widely discussed hypothesis in autism spectrum disorders (ASD). The presence of such an imbalance may potentially define a therapeutic target for the treatment of cognitive disabilities related to this pathology. Consequently, the study of monogenic disorders related to autism, such as neurofibromatosis type 1 (NF1), represents a promising approach to isolate mechanisms underlying ASD-related cognitive disabilities. However, the NF1 mouse model showed increased γ-aminobutyric acid (GABA) neurotransmission, whereas the human disease showed reduced cortical GABA levels. It is therefore important to clarify whether the E/I imbalance hypothesis holds true. We hypothesize that E/I may depend on distinct pre- and postsynaptic push-pull mechanisms that might be are region-dependent.
Methods
In current study, we assessed two critical components of E/I regulation: the concentration of neurotransmitters and levels of GABA(A) receptors. Measurements were performed across the hippocampi, striatum, and prefrontal cortices by combined in vivo magnetic resonance spectroscopy (MRS) and molecular approaches in this ASD-related animal model, the Nf1 +/− mouse.
Results
Cortical and striatal GABA/glutamate ratios were increased. At the postsynaptic level, very high receptor GABA(A) receptor expression was found in hippocampus, disproportionately to the small reduction in GABA levels. Gabaergic tone (either by receptor levels change or GABA/glutamate ratios) seemed therefore to be enhanced in all regions, although by a different mechanism.
Conclusions
Our data provides support for the hypothesis of E/I imbalance in NF1 while showing that pre- and postsynaptic changes are region-specific. All these findings are consistent with our previous physiological evidence of increased inhibitory tone. Such heterogeneity suggests that therapeutic approaches to address neurochemical imbalance in ASD may need to focus on targets where convergent physiological mechanisms can be found.</p
Increased Oxidative Burden Associated with Traffic Component of Ambient Particulate Matter at Roadside and Urban Background Schools Sites in London
As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP). Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM) samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OPAA m−3) and glutathione (OPGSH m−3) depletion, the highest OP per cubic metre of air was in the largest size fraction, PM1.9–10.2. However, when expressed per unit mass of particles OPAA µg−1 showed no significant dependence upon particle size, while OPGSH µg−1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V) or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between site types.\ud
\u
Tearing Out the Income Tax by the (Grass)Roots
Landscapes are increasingly fragmented, and conservation programs have started to look at network approaches for maintaining populations at a larger scale. We present an agent-based model of predator–prey dynamics where the agents (i.e. the individuals of either the predator or prey population) are able to move between different patches in a landscaped network. We then analyze population level and coexistence probability given node-centrality measures that characterize specific patches. We show that both predator and prey species benefit from living in globally well-connected patches (i.e. with high closeness centrality). However, the maximum number of prey species is reached, on average, at lower closeness centrality levels than for predator species. Hence, prey species benefit from constraints imposed on species movement in fragmented landscapes since they can reproduce with a lesser risk of predation, and their need for using anti-predatory strategies decreases.authorCount :
Correlation function of null polygonal Wilson loops with local operators
We consider the correlator of a light-like polygonal Wilson loop
with n cusps with a local operator (like the dilaton or the chiral primary
scalar) in planar N =4 super Yang-Mills theory. As a consequence of conformal
symmetry, the main part of such correlator is a function F of 3n-11 conformal
ratios. The first non-trivial case is n=4 when F depends on just one conformal
ratio \zeta. This makes the corresponding correlator one of the simplest
non-trivial observables that one would like to compute for generic values of
the `t Hooft coupling \lambda. We compute F(\zeta,\lambda) at leading order in
both the strong coupling regime (using semiclassical AdS5 x S5 string theory)
and the weak coupling regime (using perturbative gauge theory). Some results
are also obtained for polygonal Wilson loops with more than four edges.
Furthermore, we also discuss a connection to the relation between a correlator
of local operators at null-separated positions and cusped Wilson loop suggested
in arXiv:1007.3243.Comment: 36 pages, 2 figure
Holographic three-point functions for short operators
We consider holographic three-point functions for operators dual to short
string states at strong coupling in N=4 super Yang-Mills. We treat the states
as point-like as they come in from the boundary but as strings in the
interaction region in the bulk. The interaction position is determined by
saddle point, which is equivalent to conservation of the canonical momentum for
the interacting particles, and leads to conservation of their conformal
charges. We further show that for large dimensions the rms size of the
interaction region is small compared to the radius of curvature of the AdS
space, but still large compared to the string Compton wave-length. Hence, one
can approximate the string vertex operators as flat-space vertex operators with
a definite momentum, which depends on the conformal and R-charges of the
operator. We then argue that the string vertex operator dual to a primary
operator is chosen by satisfying a twisted version of Q^L=Q^R, up to spurious
terms. This leads to a unique choice for a scalar vertex operator with the
appropriate charges at the first massive level. We then comment on some
features of the corresponding three-point functions, including the application
of these results to Konishi operators.Comment: 24 pages; v2: References added, typos fixed, minor change
- …