39,055 research outputs found

    A Dain Inequality with charge

    Get PDF
    We prove an upper bound for angular-momentum and charge in terms of the mass for electro-vacuum asymptotically flat axisymmetric initial data sets with simply connected orbit space

    Critical Behavior of a Three-State Potts Model on a Voronoi Lattice

    Full text link
    We use the single-histogram technique to study the critical behavior of the three-state Potts model on a (random) Voronoi-Delaunay lattice with size ranging from 250 to 8000 sites. We consider the effect of an exponential decay of the interactions with the distance,J(r)=J0exp(ar)J(r)=J_0\exp(-ar), with a>0a>0, and observe that this system seems to have critical exponents γ\gamma and ν\nu which are different from the respective exponents of the three-state Potts model on a regular square lattice. However, the ratio γ/ν\gamma/\nu remains essentially the same. We find numerical evidences (although not conclusive, due to the small range of system size) that the specific heat on this random system behaves as a power-law for a=0a=0 and as a logarithmic divergence for a=0.5a=0.5 and a=1.0a=1.0Comment: 3 pages, 5 figure

    Mass, angular-momentum, and charge inequalities for axisymmetric initial data

    Get PDF
    We present the key elements of the proof of an upper bound for angular-momentum and charge in terms of the mass for electro-vacuum asymptotically flat axisymmetric initial data sets with simply connected orbit space
    corecore