549 research outputs found

    Effect of intraoperative fluid optimisation on renal function in patients undergoing emergency abdominal surgery; a randomised controlled pilot study (ISRCTN 11799696) Fluid optimisation for emergency surgery

    Get PDF
    <b>Background:</b> Emergency abdominal surgery carries a high risk of postoperative morbidity and mortality. Goal directed therapy has been advocated to improve outcome in high-risk surgery. The aim of the present pilot study was to examine the effect of goal directed therapy using fluid alone on postoperative renal function and organ failure score in patients undergoing emergency abdominal surgery. <b>Methods:</b> This prospective randomised pilot study included patients over the age of 50 undergoing emergency abdominal surgery. In the intervention group pulse pressure variation measurements were used to guide fluid boluses of 6% Hydroxyethylstarch 130/0.4. The control group received standard care. Serum urea, creatinine and cystatin C levels were measured prior to and at the end of surgery and postoperatively on day 1, day 3 and day 5. <b>Results:</b> Thirty patients were recruited. One patient died prior to surgery and was excluded from the analysis. The intervention group received a median of 750ml of hydroxyethylstarch. The peak values of postoperative urea were 6.9 (2.7–31.8) vs. 6.4 (3.5–11.5)mmol/l (p=0.425), creatinine 100 (60–300) vs. 85 (65–150) ÎŒmol/l (p=0.085) and cystatin C 1.09 (0.66–4.94) vs. 1.01 (0.33–2.29)mg/dl (p=0.352) in the control and intervention group, respectively. <b>Conclusions:</b> In the present pilot study replacing the identified fluid deficit was not associated with a change in renal function. These results do not preclude that goal directed therapy using fluid alone may have an effect on renal function but they would suggest that the effect size of fluid optimisation alone on renal function is small

    Relativistic Models for Binary Neutron Stars with Arbitrary Spins

    Full text link
    We introduce a new numerical scheme for solving the initial value problem for quasiequilibrium binary neutron stars allowing for arbitrary spins. The coupled Einstein field equations and equations of relativistic hydrodynamics are solved in the Wilson-Mathews conformal thin sandwich formalism. We construct sequences of circular-orbit binaries of varying separation, keeping the rest mass and circulation constant along each sequence. Solutions are presented for configurations obeying an n=1 polytropic equation of state and spinning parallel and antiparallel to the orbital angular momentum. We treat stars with moderate compaction ((m/R) = 0.14) and high compaction ((m/R) = 0.19). For all but the highest circulation sequences, the spins of the neutron stars increase as the binary separation decreases. Our zero-circulation cases approximate irrotational sequences, for which the spin angular frequencies of the stars increases by 13% (11%) of the orbital frequency for (m/R) = 0.14 ((m/R) = 0.19) by the time the innermost circular orbit is reached. In addition to leaving an imprint on the inspiral gravitational waveform, this spin effect is measurable in the electromagnetic signal if one of the stars is a pulsar visible from Earth.Comment: 21 pages, 14 figures. A few explanatory sentences added and some typos corrected. Accepted for publication in Phys. Rev.

    Termination Analysis with Compositional Transition Invariants

    Full text link
    Modern termination provers rely on a safety checker to construct disjunctively well-founded transition invariants. This safety check is known to be the bottleneck of the procedure. We present an alternative algorithm that uses a light-weight check based on transitivity of ranking relations to prove program termination. We provide an exper-imental evaluation over a set of 87 Windows drivers, and demonstrate that our algorithm is often able to conclude termination by examining only a small fraction of the program. As a consequence, our algorithm is able to outperform known approaches by multiple orders of magnitude

    Interactive Termination Proofs Using Termination Cores

    Full text link
    Abstract. Recent advances in termination analysis have yielded new methods and tools that are highly automatic. However, when they fail, even experts have difficulty understanding why and determining how to proceed. In this paper, we address the issue of building termination analysis engines that are both highly automatic and easy to use in an interactive setting. We consider the problem in the context of ACL2, which has a first-order, functional programming language. We introduce the notion of a termination core, a simplification of the program under consideration which consists of a single loop that the termination engine cannot handle. We show how to extend the Size Change Termination (SCT) algorithm so that it generates termination cores when it fails to prove termination, with no increase to its complexity. We show how to integrate this into the Calling Context Graph (CCG) termination analysis, a powerful SCT-based automatic termination analysis that is part of the ACL2 Sedan. We also present several new, convenient ways of allowing users to interface with the CCG analysis, in order to guide it to a termination proof.

    1/Nc1/N_c Expansion for Excited Baryons

    Get PDF
    We derive consistency conditions which constrain the possible form of the strong couplings of the excited baryons to the pions. The consistency conditions follow from requiring the pion-excited baryon scattering amplitudes to satisfy the large-N_c Witten counting rules and are analogous to consistency conditions used by Dashen, Jenkins and Manohar and others for s-wave baryons. The consistency conditions are explicitly solved, giving the most general allowed form of the strong vertices for excited baryons in the large-N_c limit. We show that the solutions to the large-N_c consistency conditions coincide with the predictions of the nonrelativistic quark model for these states, extending the results previously obtained for the s-wave baryons. The 1/N_c corrections to these predictions are studied in the quark model with arbitrary number of colors N_c.Comment: 56 pages, REVTeX; one new Appendix added containing a discussion of the results in the language of quark operator

    Absorption of electromagnetic and gravitational waves by Kerr black holes

    Get PDF
    We calculate the absorption cross section for planar waves incident upon Kerr black holes, and present a unified picture for scalar, electromagnetic and gravitational waves. We highlight the spin-helicity effect that arises from a coupling between the rotation of the black hole and the helicity of a circularlypolarized wave. For the case of on-axis incidence, we introduce an extended ‘sinc approximation’ to quantify the spin-helicity effect in the strong-field regime

    Various features of quasiequilibrium sequences of binary neutron stars in general relativity

    Full text link
    Quasiequilibrium sequences of binary neutron stars are numerically calculated in the framework of the Isenberg-Wilson-Mathews (IWM) approximation of general relativity. The results are presented for both rotation states of synchronized spins and irrotational motion, the latter being considered as the realistic one for binary neutron stars just prior to the merger. We assume a polytropic equation of state and compute several evolutionary sequences of binary systems composed of different-mass stars as well as identical-mass stars with adiabatic indices gamma=2.5, 2.25, 2, and 1.8. From our results, we propose as a conjecture that if the turning point of binding energy (and total angular momentum) locating the innermost stable circular orbit (ISCO) is found in Newtonian gravity for some value of the adiabatic index gamma_0, that of the ADM mass (and total angular momentum) should exist in the IWM approximation of general relativity for the same value of the adiabatic index.Comment: Text improved, some figures changed or deleted, new table, 38 pages, 31 figures, accepted for publication in Phys. Rev.

    Primordialists and Constructionists: a typology of theories of religion

    Get PDF
    This article adopts categories from nationalism theory to classify theories of religion. Primordialist explanations are grounded in evolutionary psychology and emphasize the innate human demand for religion. Primordialists predict that religion does not decline in the modern era but will endure in perpetuity. Constructionist theories argue that religious demand is a human construct. Modernity initially energizes religion, but subsequently undermines it. Unpacking these ideal types is necessary in order to describe actual theorists of religion. Three distinctions within primordialism and constructionism are relevant. Namely those distinguishing: a) materialist from symbolist forms of constructionism; b) theories of origins from those pertaining to the reproduction of religion; and c) within reproduction, between theories of religious persistence and secularization. This typology helps to make sense of theories of religion by classifying them on the basis of their causal mechanisms, chronology and effects. In so doing, it opens up new sightlines for theory and research
    • 

    corecore