84 research outputs found

    Patient perspectives in the management of asthma: improving patient outcomes through critical selection of treatment options

    Get PDF
    Asthma is a chronic inflammatory disorder of the airways that requires long-term treatment, the goal of which is to control clinical symptoms for extended periods with the least possible amount of drugs. International guidelines recommend the addition of an inhaled long-acting beta2-agonist (LABA) to a low- to medium-dose inhaled corticosteroid (ICS) when low doses of ICS fail to control asthma symptoms. The fixed combined administration of ICS/LABA improves patient compliance, reducing the risk of therapy discontinuation. The relative deposition pattern of the inhaled drug to the target site is the result of a complex interaction between the device used, the aerosol formulation and the patient’s adherence to therapy. Different inhalation devices have been introduced in clinical practice over time. The new hydrofluoroalkane (HFA) solution aerosols allow for the particle size to be modified, thus leading to deeper penetration of the medication into the lung. The Modulite® technology allows for the manipulation of inhaled HFA-based solution formulations, such as the fixed beclomethasone/formoterol combination, resulting in a uniform treatment of inflammation and bronchoconstriction. The success of any anti-asthmatic treatment depends on the choice of the correct device and the adherence to therapy

    The First Level Trigger of JEM-EUSO: Concept and tests

    Get PDF
    The trigger system of JEM-EUSO is designed to meet specific challenging requirements. These include managing a large number of pixels ( 3·10^5) and using a very fast, low power consuming, and radiation hard electronics. It must achieve a high signal-to-noise performance and flexibility and cope with the limited down-link transmission rate from the International Space Station (ISS) to Earth. The general overview of the First Level Trigger for cosmic ray detection is reviewed; tests that validate its performance are discussed

    RIP-Chip analysis supports different roles for AGO2 and GW182 proteins in recruiting and processing microRNA targets

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNA molecules mediating the translational repression and degradation of target mRNAs in the cell. Mature miRNAs are used as a template by the RNA-induced silencing complex (RISC) to recognize the complementary mRNAs to be regulated. To discern further RISC functions, we analyzed the activities of two RISC proteins, AGO2 and GW182, in the MCF-7 human breast cancer cell lin

    Negative transcriptional control of ERBB2 gene by MBP-1 and HDAC1: diagnostic implications in breast cancer

    Get PDF
    Backgound: The human ERBB2 gene is frequently amplified in breast tumors, and its high expression is associated with poor prognosis. We previously reported a significant inverse correlation between Myc promoter-binding protein-1 (MBP-1) and ERBB2 expression in primary breast invasive ductal carcinoma (IDC). MBP-1 is a transcriptional repressor of the c-MYC gene that acts by binding to the P2 promoter; only one other direct target of MBP-1, the COX2 gene, has been identified so far. Methods: To gain new insights into the functional relationship linking MBP-1 and ERBB2 in breast cancer, we have investigated the effects of MBP-1 expression on endogenous ERBB2 transcript and protein levels, as well as on transcription promoter activity, by transient-transfection of SKBr3 cells. Reporter gene and chromatin immunoprecipitation assays were used to dissect the ERBB2 promoter and identify functional MBP-1 target sequences. We also investigated the relative expression of MBP-1 and HDAC1 in IDC and normal breast tissues by immunoblot analysis and immunohistochemistry. Results: Transfection experiments and chromatin immunoprecipitation assays in SKBr3 cells indicated that MBP-1 negatively regulates the ERBB2 gene by binding to a genomic region between nucleotide -514 and - 262 of the proximal promoter; consistent with this, a concomitant recruitment of HDAC1 and loss of acetylated histone H4 was observed. In addition, we found high expression of MBP-1 and HDAC1 in normal tissues and a statistically significant inverse correlation with ErbB2 expression in the paired tumor samples. Conclusions: Altogether, our in vitro and in vivo data indicate that the ERBB2 gene is a novel MBP-1 target, and immunohistochemistry analysis of primary tumors suggests that the concomitant high expression of MBP-1 and HDAC1 may be considered a diagnostic marker of cancer progression for breast IDC

    Myc Promoter-Binding Protein-1 (MBP-1) Is a Novel Potential Prognostic Marker in Invasive Ductal Breast Carcinoma

    Get PDF
    Background Alpha-enolase is a glycolytic enzyme that catalyses the formation of phosphoenolpyruvate in the cell cytoplasm. \u3b1-Enolase and the predominantly nuclear Myc promoter-binding protein-1 (MBP-1) originate from a single gene through the alternative use of translational starting sites. MBP-1 binds to the P2 c-myc promoter and competes with TATA-box binding protein (TBP) to suppress gene transcription. Although several studies have shown an antiproliferative effect of MBP-1 overexpression on several human cancer cells, to date detailed observations of \u3b1-enolase and MBP-1 relative expression in primary tumors versus normal tissues and their correlation with clinicopathological features have not been undertaken. Methodology and Findings We analyzed \u3b1-enolase and MBP-1 expression in normal breast epithelium and primary invasive ductal breast carcinoma (IDC) from 177 patients by Western blot and immunohistochemical analyses, using highly specific anti-\u3b1-enolase monoclonal antibodies. A significant increase in the expression of cytoplasmic \u3b1-enolase was observed in 98% of the tumors analysed, compared to normal tissues. Nuclear MBP-1 was found in almost all the normal tissues while its expression was retained in only 35% of the tumors. Statistically significant associations were observed among the nuclear expression of MBP-1 and ErbB2 status, Ki-67 expression, node status and tumor grade. Furthermore MBP-1 expression was associated with good survival of patients with IDC. Conclusions MBP-1 functions in repressing c-myc gene expression and the results presented indicate that the loss of nuclear MBP-1 expression in a large number of IDC may be a critical step in the development and progression of breast cancer and a predictor of adverse outcome. Nuclear MBP-1 appears to be a novel and valuable histochemical marker with potential prognostic value in breast cancer

    Low Scale Flavor Gauge Symmetries

    Full text link
    We study the possibility of gauging the Standard Model flavor group. Anomaly cancellation leads to the addition of fermions whose mass is inversely proportional to the known fermion masses. In this case all flavor violating effects turn out to be controlled roughly by the Standard Model Yukawa, suppressing transitions for the light generations. Due to the inverted hierarchy the scale of new gauge flavor bosons could be as low as the electroweak scale without violating any existing bound but accessible at the Tevatron and the LHC. The mechanism of flavor protection potentially provides an alternative to Minimal Flavor Violation, with flavor violating effects suppressed by hierarchy of scales rather than couplings.Comment: 24 pages + appendices; v2) Refs. added and numerical examples improved. Results unchanged; v3) small typos in appendix B correcte

    Theranostic biomarkers and PARP-inhibitors effectiveness in patients with non-BRCA associated homologous recombination deficient tumors: Still looking through a dirty glass window?

    Get PDF
    : Breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2) deleterious variants were the first and, still today, the main biomarkers of poly(ADP)ribose polymerase (PARP)-inhibitors (PARPis) benefit. The recent, increased, numbers of individuals referred for counseling and multigene panel testing, and the remarkable expansion of approved PARPis, not restricted to BRCA1/BRCA2-Pathogenic Variants (PVs), produced a strong clinical need for non-BRCA biomarkers. Significant limitations of the current testing and assays exist. The different approaches that identify the causes of Homologous Recombination Deficiency (HRD), such as the germline and somatic Homologous Recombination Repair (HRR) gene PVs, the testing showing its consequences, such as the genomic scars, or the novel functional assays such as the RAD51 foci testing, are not interchangeable, and should not be considered as substitutes for each other in clinical practice for guiding use of PARPi in non-BRCA, HRD-associated tumors. Today, the deeper knowledge on the significant relationship among all proteins involved in the HRR, not limited to BRCA, expands the possibility of a successful non-BRCA, HRD-PARPi synthetic lethality and, at the same time, reinforces the need for enhanced definition of HRD biomarkers predicting the magnitude of PARPi benefit
    • …
    corecore