34 research outputs found

    Multiple trophic levels in soft-bottom communities

    No full text

    Mytilid mussels: global habitat engineers in coastal sediments

    Get PDF
    International audienceDense beds of mussels of the family Mytilidae occur worldwide on soft-bottoms in cold and warm temperate coastal waters and have usually been considered hot spots of biodiversity. We examined intertidal mussel beds at four distant locations around the globe with the same sampling method, to find out whether this “hot spot” designation holds universally. We studied species assemblages within the matrices of byssally interconnected mussels engineered by in the North Sea, by mixed and at the southern Chilean coast, by in the Yellow Sea and by at the coast of southern Australia. In all cases, species assemblages inside mussel beds were significantly different from those outside with many species being restricted to one habitat type. However, species richness and diversity were not generally higher in mussel beds than in ambient sediments without mussels. In the North Sea () and at the Chilean coast (, ), mussel beds have markedly higher species numbers and diversities than surrounding sediments, but this was not the case for mussel beds in Australia () and the Yellow Sea () where numbers of associated species were only slightly higher and somewhat lower than in adjacent sediments, respectively. In conclusion, although soft bottom mytilid mussels generally enhance habitat heterogeneity and species diversity at the ecosystem level, mussel beds themselves are not universal centres of biodiversity, but the effects on associated species are site specific

    Waves affect predator-prey interactions between fish and benthic invertebrates.

    Get PDF
    Little is known about the effects of waves on predator–prey interactions in the littoral zones of freshwaters. We conducted a set of mesocosm experiments to study the differential effects of ship- and wind-induced waves on the foraging success of littoral fish on benthic invertebrates. Experiments were conducted in a wave tank with amphipods (Gammarus roeseli) as prey, and age-0 bream (Abramis brama, B0), age-0 and age-1 dace (Leuciscus leuciscus, D0 and D1) as predators. The number of gammarids suspended in the water column was higher in the wave treatments compared to a no-wave control treatment, especially during pulse waves mimicking ship-induced waves in comparison to continuous waves mimicking windinduced waves. The resulting higher prey accessibility in the water column was differently exploited by the three types of predatory fish. D0 and D1 showed significantly higher foraging success in the pulse wave treatment than in the continuous and control treatments. The foraging success of D0 appears to be achieved more easily, since significantly higher swimming activity and more foraging attempts were recorded only for D1 under the wave treatments. In contrast, B0 consumed significantly fewer gammarids in both wave treatments than in the control. Hence, waves influenced predator–prey interactions differently depending on wave type and fish type. It is expected that regular exposure to ship-induced waves can alter littoral invertebrate and fish assemblages by increasing the predation risk for benthic invertebrates that are suspended in the water column, and by shifting fish community compositions towards species that benefit from waves

    Bivalve Assemblages as Hotspots for Biodiversity

    No full text
    Many bivalve species occur in aggregations, and locally cover large partsof the seafloor. Above a certain density they provide a distinct, three dimensional structure and the aggregations are called bivalve beds or reefs. These persistent aggregations form a biogenic habitat for many other species. Bivalve beds, therefore, often have, in comparison with the surrounding areas, a high biodiversity value and can be seen as hotspots for biodiversity. Bivalve have a wide global distribution, on rocky and sedimentary coasts. Different processes and mechanisms influence the presence of associated benthic fauna. This paper reviewed the main drivers that influence the biodiversity, such as the bivalve species involved, the density, the size and the age of the bed, the depth or height in the tidal zone and the substratum type. Bivalve beds not only occur naturally in many subtidal and intertidal areas around the world, but mussels and oysters are also extensively cultured. Addition of physical cultivation structures in the water column or on the bottom allows for development of substantial and diverse communities that have a structure similar to that of natural beds. Dynamics of culture populations may however differ from naturalbivalve reefs as a result of culture site and/or maintenance and operation likeharvesting of the bivalve cultures. We used the outcome of the review on the drivers for wild assemblages to evaluate trade-offs between bivalve aquaculture and biodiversity conservation. Studies comparing natural and cultured assemblages proved to allow for a better understanding of the effect of the culture strategies and, consequently, to forward sustainable bivalve cultures. This is illustrated by a case study in the Dutch Wadden Sea
    corecore