619 research outputs found

    The effect of rate of nitrogen fertilization, geographic location, and date of harvest on yield, acceptability, and nutritive value of timothy hay, Station Bulletin, no.486

    Get PDF
    The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire

    Nutritive value of dried beet pulp, Station Bulletin, no.477

    Get PDF
    The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire

    The nutritive value of dried citrus pulp for dairy cattle, Station Bulletin, no.438

    Get PDF
    The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire

    The effect of texture on the nutritive value of concentrates for dairy cattle, Station Bulletin, no.419

    Get PDF
    The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire

    Nutritive value of redtop hay cut at different stages of maturity, Station Bulletin, no.488

    Get PDF
    The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire

    The effect of rate of nitrogen ferlilizalion and date of harvest on yield, persistency and nutritive value of Bromegrass hay, Station Bulletin, no.472

    Get PDF
    The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire

    An In Vivo Platform for Tumor Biomarker Assessment

    Get PDF
    Tumor biomarkers provide a quantitative tool for following tumor progression and response to therapy. However, investigations of clinically useful tumor biomarkers are time-consuming, costly, and limited by patient and tumor heterogeneity. In addition, assessment of biomarkers as indicators of therapy response is confounded by the concomitant use of multiple therapeutic interventions. Herein we report our use of a clinically relevant orthotopic animal model of malignant pleural mesothelioma for investigating tumor biomarkers. Utilizing multi-modality imaging with correlative histopathology, we demonstrate the utility and accuracy of the mouse model in investigating tumor biomarkers – serum soluble mesothelin-related peptide (SMRP) and osteopontin (OPN). This model revealed percentage change in SMRP level to be an accurate biomarker of tumor progression and therapeutic response – a finding consistent with recent clinical studies. This in vivo platform demonstrates the advantages of a validated mouse model for the timely and cost-effective acceleration of human biomarker translational research

    In silico comparative genomics analysis of Plasmodium falciparum for the identification of putative essential genes and therapeutic candidates.

    Full text link
    A sequence of computational methods was used for predicting novel drug targets against drug resistant malaria parasite Plasmodium falciparum. Comparative genomics, orthologous protein analysis among same and other malaria parasites and protein-protein interaction study provide us new insights into determining the essential genes and novel therapeutic candidates. Among the predicted list of 21 essential proteins from unique pathways, 11 proteins were prioritized as anti-malarial drug targets. As a case study, we built homology models of two uncharacterized proteins using MODELLER v9.13 software from possible templates. Functional annotation of these proteins was done by the InterPro databases and from ProBiS server by comparison of predicted binding site residues. The model has been subjected to in silico docking study with screened potent lead compounds from the ZINC database by Dock Blaster software using AutoDock 4. Results from this study facilitate the selection of proteins and putative inhibitors for entry into drug design production pipelines

    DNA binding induces active site conformational change in the human TREX2 3′-exonuclease

    Get PDF
    The TREX enzymes process DNA as the major 3′→5′ exonuclease activity in mammalian cells. TREX2 and TREX1 are members of the DnaQ family of exonucleases and utilize a two metal ion catalytic mechanism of hydrolysis. The structure of the dimeric TREX2 enzyme in complex with single-stranded DNA has revealed binding properties that are distinct from the TREX1 protein. The TREX2 protein undergoes a conformational change in the active site upon DNA binding including ordering of active site residues and a shift of an active site helix. Surprisingly, even when a single monomer binds DNA, both monomers in the dimer undergo the structural rearrangement. From this we have proposed a model for DNA binding and 3′ hydrolysis for the TREX2 dimer. The structure also shows how TREX proteins potentially interact with double-stranded DNA and suggest features that might be involved in strand denaturation to provide a single-stranded substrate for the active site

    A short update on the structure of drug binding sites on neurotransmitter transporters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dopamine (DAT), noradrenalin (NET) and serotonin (SERT) transporters are molecular targets for different classes of psychotropic drugs. Cocaine and the SSRI (<it>S</it>)-citalopram block neurotransmitter reuptake competitively, but while cocaine is a non-selective reuptake inhibitor, (<it>S</it>)-citalopram is a selective SERT inhibitor.</p> <p>Findings</p> <p>Here we present comparisons of the binding sites and the electrostatic potential surfaces (EPS) of DAT, NET and SERT homology models based on two different LeuT<sub>Aa </sub>templates; with a substrate (leucine) in an occluded conformation (PDB id <ext-link ext-link-id="2a65" ext-link-type="pdb">2a65</ext-link>), and with an inhibitor (tryptophan) in an open-to-out conformation (PDB id <ext-link ext-link-id="3f3a" ext-link-type="pdb">3f3a</ext-link>). In the occluded homology models, two conserved aromatic amino acids (tyrosine and phenylalanine) formed a gate between the putative binding pockets, and this contact was interrupted in the open to out conformation. The EPS of DAT and NET were generally negative in the vestibular area, whereas the EPS of the vestibular area of SERT was more neutral.</p> <p>Conclusions</p> <p>The findings presented here contribute as an update on the structure of the binding sites of DAT, NET and SERT. The updated models, which have larger ligand binding site areas than models based on other templates, may serve as improved tools for virtual ligand screening.</p
    corecore