10,018 research outputs found
Recommended from our members
Bioaccessibility of PBDEs present in indoor dust: a novel dialysis membrane method with a Tenax TA® absorption sink
Human uptake of flame retardants (FRs) such as polybrominated diphenyl ethers (PBDEs) via indoor dust ingestion is commonly considered as 100% bioaccessible, leading to potential risk overestimation. Here, we present a novel in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax TA® as an absorptive "sink" capable to enhance PBDE gut bioaccessibility. A cellulose-based dialysis membrane (MW cut-off 3.5kDa) with high pH and temperature tolerance was used to encapsulate Tenax TA®, facilitating efficient physical separation between the absorbent and the dust, while minimizing re-absorption of the ingested PBDEs to the dust particles. As a proof of concept, PBDE-spiked indoor dust samples (n=3) were tested under four different conditions; without any Tenax TA® addition (control) and with three different Tenax TA® loadings (i.e. 0.25, 0.5 or 0.75g). Our results show that in order to maintain a constant sorptive gradient for the low MW PBDEs, 0.5g of Tenax TA® are required in CE-PBET. Tenax TA® inclusion (0.5g) resulted in 40% gut bioaccessibility for BDE153 and BDE183, whereas greater bioaccessibility values were seen for less hydrophobic PBDEs such as BDE28 and BDE47 (~60%). When tested using SRM 2585 (n=3), our new Tenax TA® method did not present any statistically significant effect (p>0.05) between non-spiked and PBDE-spiked SRM 2585 treatments. Our study describes an efficient method where due to the sophisticated design, Tenax TA® recovery and subsequent bioaccessibility determination can be simply and reliably achieved
“Oriaku Vs Okpataku”: The Changing Roles of Femininity within The Patriarchal Igbo Tradition in Nigeria
Over time, the ease of access has been to the advantage of men and the disadvantage of women, especially in a traditional society like Nigeria. However, despite the marginalization, it appears that women are beginning to challenge norms, traditions, cultures, and stereotypes by breaking free from the shackles of patriarchy. Hence, this study examines the current perception of femininity concerning employment and income. Specifically, it aimed at understanding how the clamor for gender equality and equity has changed one of the characteristics of femininity from “Oriaku” to “Okpataku” in a typical patriarchal society like Anambra State, Nigeria. Using the Constructionist Theory of representation as a framework, the study adopts in-depth interviews as a qualitative approach. Findings reveal that both men and women are more comfortable with being Okpataku than Oriaku, owing to the recent harsh economic reality in the country. Recommendations were made based on the findings
Applying Deep Learning To Airbnb Search
The application to search ranking is one of the biggest machine learning
success stories at Airbnb. Much of the initial gains were driven by a gradient
boosted decision tree model. The gains, however, plateaued over time. This
paper discusses the work done in applying neural networks in an attempt to
break out of that plateau. We present our perspective not with the intention of
pushing the frontier of new modeling techniques. Instead, ours is a story of
the elements we found useful in applying neural networks to a real life
product. Deep learning was steep learning for us. To other teams embarking on
similar journeys, we hope an account of our struggles and triumphs will provide
some useful pointers. Bon voyage!Comment: 8 page
Recommended from our members
Measuring optical activity in the far-field from a racemic nanomaterial: Diffraction spectroscopy from plasmonic nanogratings
Recent progress in nanofabrication has redrawn the boundaries of the applicability of chiroptical (chiral optical) effects. Chirality, often expressed as a twist in biomolecules, is crucial for pharmaceuticals, where it can result in extremely different chemical properties. Because chiroptical effects are typically very weak in molecules, plasmonic nanomaterials are often proposed as a promising platform to significantly enhance these effects. Unfortunately, the ideal plasmonic nanomaterial has conflicting requirements: Its chirality should enhance that of the chiral molecules and yet it should have no chiroptical response on its own. Here, we propose a unique reconciliation to satisfy the requirements: A racemic plasmonic nanomaterial, consisting of equal amounts of opposite chiral unit cells. We show how diffraction spectroscopy can be used to unveil the presence of chirality in such racemic nanogratings in the far-field. Our experiments are supported by numerical simulations and yield a circular intensity difference of up to 15%. The physical origin is demonstrated by full wave simulations in combination with a Green's function-group-theory-based analysis. Contributions from Circular Dichroism in the Angular Distribution of Photoelectrons (CDAD) and pseudo/extrinsic chirality are ruled out. Our findings enable the far-field measurement and tuning of racemic nanomaterials, which is crucial for hyper-sensitive chiral molecular characterization.V. K. V. acknowledges support from the Royal Society through the University Research Fellowships. We acknowledge Royal Society grants CHG\R1\170067, PEF1\170015 and RGF\EA\180228, as well as STFC grant ST/R005842/1 and EPSRC grant EP/L015544/1. C. W. acknowledges financial support from Cancer Research UK (CRUK) Pioneer Award (C55962/A24669) and Wolfson College, Cambridge, UK. C. W. further acknowledges research support from S. Bohndiek, T. Wilkinson and G. Gordon. X. Z. and G. A. E. V. are grateful for the financial support from the FWO (G090017N) and KU Leuven internal research funds (C24/15/015)
Death receptor 3 (TNFRSF25) increases mineral apposition by osteoblasts and region specific new bone formation in the axial skeleton of male DBA/1 mice
Fraser L. Collins and this work were funded by an Arthritis Research UK PhD studentship (Grant Code: 18598) awarded to Anwen S. Williams, Eddie C. Y. Wang, and Michael D. Stone. Eddie C. Y. Wang was additionally funded by MRC Project Grant G0901119. Funding for open access was kindly provided by Cardiff University.Peer reviewedPublisher PD
Accuracy of core mass estimates in simulated observations of dust emission
We study the reliability of mass estimates obtained for molecular cloud cores
using sub-millimetre and infrared dust emission. We use magnetohydrodynamic
simulations and radiative transfer to produce synthetic observations with
spatial resolution and noise levels typical of Herschel surveys. We estimate
dust colour temperatures using different pairs of intensities, calculate column
densities and compare the estimated masses with the true values. We compare
these results to the case when all five Herschel wavelengths are available. We
investigate the effects of spatial variations of dust properties and the
influence of embedded heating sources. Wrong assumptions of dust opacity and
its spectral index beta can cause significant systematic errors in mass
estimates. These are mainly multiplicative and leave the slope of the mass
spectrum intact, unless cores with very high optical depth are included.
Temperature variations bias colour temperature estimates and, in quiescent
cores with optical depths higher than for normal stable cores, masses can be
underestimated by up to one order of magnitude. When heated by internal
radiation sources the observations recover the true mass spectra. The shape,
although not the position, of the mass spectrum is reliable against
observational errors and biases introduced in the analysis. This changes only
if the cores have optical depths much higher than expected for basic
hydrostatic equilibrium conditions. Observations underestimate the value of
beta whenever there are temperature variations along the line of sight. A bias
can also be observed when the true beta varies with wavelength. Internal
heating sources produce an inverse correlation between colour temperature and
beta that may be difficult to separate from any intrinsic beta(T) relation of
the dust grains. This suggests caution when interpreting the observed mass
spectra and the spectral indices.Comment: Revised version, 17 pages, 17 figures, submitted to A&
Concurrent OHimager and sodium temperature/wind lidar observation of localized ripples over Northern Colorado
On 3 and 5 September 2002 the OH all-sky imager at Platteville, Colorado (40.2°N, 104.7°W), observed small-scale, wavelike patterns (known as ripples), with horizontal wavelengths of ∼9 km and ∼7 km and lifetimes of ∼9 min and ∼15 min, respectively. The Colorado State University sodium lidar at nearby Fort Collins, Colorado (40.6°N, 105°W), also made concurrent observations of temperature and zonal and meridional winds, which allowed us to determine the nature of the ripples observed. Our observations suggest that the 3 September ripple was induced by a convective instability located at 87.5 km and the 5 September ripple was induced by a dynamic instability at 88.5 km. The ripples clearly advected as packets with the background wind. Lidar measurements also allowed us to relate the directions of wind shear to the phase front alignments of both the ripples and the nearby short-period atmospheric gravity waves. These spatial relationships provided a meaningful comparison with previously observed ripples as well as with current theoretical models. Using the 16-hour continuous lidar data set for each case, we deduced that long-period waves created an unusually large temperature perturbation at the ripple times on 3 September and an unusually large wind shear perturbation on 5 September. These perturbations prepared the background atmosphere to be near the verge of local instability, but, as revealed again by lidar observation, it was the superposition of smaller-scale perturbations at the time of the ripples that helped to actually reach the conditions required for instability and generation of the ripples
- …