1,570 research outputs found
Hard Scattering Factorization from Effective Field Theory
In this paper we show how gauge symmetries in an effective theory can be used
to simplify proofs of factorization formulae in highly energetic hadronic
processes. We use the soft-collinear effective theory, generalized to deal with
back-to-back jets of collinear particles. Our proofs do not depend on the
choice of a particular gauge, and the formalism is applicable to both exclusive
and inclusive factorization. As examples we treat the pi-gamma form factor
(gamma gamma* -> pi^0), light meson form factors (gamma* M -> M), as well as
deep inelastic scattering (e- p -> e- X), Drell-Yan (p pbar -> X l+ l-), and
deeply virtual Compton scattering (gamma* p -> gamma(*) p).Comment: 35 pages, 4 figures, typos corrected, journal versio
The Hopf algebra of Feynman graphs in QED
We report on the Hopf algebraic description of renormalization theory of
quantum electrodynamics. The Ward-Takahashi identities are implemented as
linear relations on the (commutative) Hopf algebra of Feynman graphs of QED.
Compatibility of these relations with the Hopf algebra structure is the
mathematical formulation of the physical fact that WT-identities are compatible
with renormalization. As a result, the counterterms and the renormalized
Feynman amplitudes automatically satisfy the WT-identities, which leads in
particular to the well-known identity .Comment: 13 pages. Latex, uses feynmp. Minor corrections; to appear in LM
Long-term perturbations due to a disturbing body in elliptic inclined orbit
In the current study, a double-averaged analytical model including the action
of the perturbing body's inclination is developed to study third-body
perturbations. The disturbing function is expanded in the form of Legendre
polynomials truncated up to the second-order term, and then is averaged over
the periods of the spacecraft and the perturbing body. The efficiency of the
double-averaged algorithm is verified with the full elliptic restricted
three-body model. Comparisons with the previous study for a lunar satellite
perturbed by Earth are presented to measure the effect of the perturbing body's
inclination, and illustrate that the lunar obliquity with the value 6.68\degree
is important for the mean motion of a lunar satellite. The application to the
Mars-Sun system is shown to prove the validity of the double-averaged model. It
can be seen that the algorithm is effective to predict the long-term behavior
of a high-altitude Martian spacecraft perturbed by Sun. The double-averaged
model presented in this paper is also applicable to other celestial systems.Comment: 28 pages, 6 figure
New Topflavor Models with Seesaw Mechanism
New class of models are constructed in which the third family quarks, but not
leptons, experience a new SU(2) or U(1) gauge force. Anomaly cancellation
enforces the introduction of spectator quarks so that the top and bottom masses
are naturally generated via a seesaw mechanism. We find the new contributions
to the (S,T,U) parameters and Zbb vertex to be generically small. We further
analyze how the reasonable flavor mixing pattern can be generated to ensure the
top-seesaw mechanism and sufficiently suppress the flavor-changing effects for
light quarks. Collider signatures for the light Higgs boson and top quark are
also discussed.Comment: To match the version in Rapid Communication of PRD, RevTex 5p
Low-Energy Photon-Photon Collisions to Two-Loop Order
We evaluate the amplitude for to two
loops in chiral perturbation theory. The three new counterterms which enter at
this order in the low-energy expansion are estimated with resonance saturation.
We find that the cross section agrees rather well with the available data and
with dispersion theoretic calculations even substantially above threshold.
Numerical results for the Compton cross section and for the neutral pion
polarizabilities are also given to two-loop accuracy.Comment: 48 pages, LaTex, 11 figs. (figures not included; available upon
request from [email protected]),BUTP-93/18,LNF-93/077(P),PSI-PR-93-1
On Power Suppressed Operators and Gauge Invariance in SCET
The form of collinear gauge invariance for power suppressed operators in the
soft-collinear effective theory is discussed. Using a field redefinition we
show that it is possible to make any power suppressed ultrasoft-collinear
operators invariant under the original leading order gauge transformations. Our
manipulations avoid gauge fixing. The Lagrangians to O(lambda^2) are given in
terms of these new fields. We then give a simple procedure for constructing
power suppressed soft-collinear operators in SCET_II by using an intermediate
theory SCET_I.Comment: 15 pages, journal versio
Precision Electroweak Observables in the Minimal Moose Little Higgs Model
Little Higgs theories, in which the Higgs particle is realized as the
pseudo-Goldstone boson of an approximate global chiral symmetry have generated
much interest as possible alternatives to weak scale supersymmetry. In this
paper we analyze precision electroweak observables in the Minimal Moose model
and find that in order to be consistent with current experimental bounds, the
gauge structure of this theory needs to be modified. We then look for viable
regions of parameter space in the modified theory by calculating the various
contributions to the S and T parameters.Comment: v2: 17 pages, 9 figures. Typeset in JHEP style. Added a references
and two figures showing parameter space for each of two reference points.
Corrected typo
QCD Corrections and the Endpoint of the Lepton Spectrum in Semileptonic B Decays
Recently, Neubert has suggested that a certain class of nonperturbative
corrections dominates the shape of the electron spectrum in the endpoint region
of semileptonic decay. Perturbative QCD corrections are important in the
endpoint region. We study the effects of these corrections on Neubert's
proposal. The connection between the endpoint of the electron spectrum in
semileptonic decay and the photon spectrum in is
outlined.Comment: 18 pages, uses REVTeX, UCSD/PTH 93-38, CALT-68-1910, JHU-TIPAC-930029
(some changes to the discussion of subleading radiative corrections, and
minor typos fixed
Probing Heavy Higgs Boson Models with a TeV Linear Collider
The last years have seen a great development in our understanding of particle
physics at the weak scale. Precision electroweak observables have played a key
role in this process and their values are consistent, within the Standard Model
interpretation, with a light Higgs boson with mass lower than about 200 GeV. If
new physics were responsible for the mechanism of electroweak symmetry
breaking, there would, quite generally, be modifications to this prediction
induced by the non-standard contributions to the precision electroweak
observables. In this article, we analyze the experimental signatures of a heavy
Higgs boson at linear colliders. We show that a linear collider, with center of
mass energy \sqrt{s} <= 1 TeV, would be very useful to probe the basic
ingredients of well motivated heavy Higgs boson models: a relatively heavy
SM-like Higgs, together with either extra scalar or fermionic degrees of
freedom, or with the mixing of the third generation quarks with non-standard
heavy quark modes.Comment: 21 page
Scaling critical behavior of superconductors at zero magnetic field
We consider the scaling behavior in the critical domain of superconductors at
zero external magnetic field. The first part of the paper is concerned with the
Ginzburg-Landau model in the zero magnetic field Meissner phase. We discuss the
scaling behavior of the superfluid density and we give an alternative proof of
Josephson's relation for a charged superfluid. This proof is obtained as a
consequence of an exact renormalization group equation for the photon mass. We
obtain Josephson's relation directly in the form , that
is, we do not need to assume that the hyperscaling relation holds. Next, we
give an interpretation of a recent experiment performed in thin films of
. We argue that the measured mean field like
behavior of the penetration depth exponent is possibly associated with a
non-trivial critical behavior and we predict the exponents and
for the correlation lenght and specific heat, respectively. In the
second part of the paper we discuss the scaling behavior in the continuum dual
Ginzburg-Landau model. After reviewing lattice duality in the Ginzburg-Landau
model, we discuss the continuum dual version by considering a family of
scalings characterized by a parameter introduced such that
, where is the bare mass of the magnetic
induction field. We discuss the difficulties in identifying the renormalized
magnetic induction mass with the photon mass. We show that the only way to have
a critical regime with is having , that
is, with having the scaling behavior of the renormalized photon mass.Comment: RevTex, 15 pages, no figures; the subsection III-C has been removed
due to a mistak
- …
