342 research outputs found

    Ioffe-time distributions instead of parton momentum distributions in description of deep inelastic scattering

    Get PDF
    We argue that parton distributions in coordinate space provide a more natural object for nonperturbative methods compared to the usual momentum distributions in which the physics of different longitudinal distances is being mixed. To illustrate the advantages of the coordinate space formulation, we calculate the coordinate space distributions for valence quarks in the proton using the QCD sum rule approach. A remarkable agreement is found between the calculated and the experimentally measured u-quark distribution up to light-cone distances Δ−=Δ0−Δ3\Delta^- = \Delta^0 - \Delta^3 of order ∌1\sim 1 fm in the proton rest frame. The calculation for valence d quarks gives much worse results; the reasons for this discrepancy are discussed.Comment: 24 pages plus 13 pages with figures, requires epsf.sty, revised version to appear in Phys.Rev.

    Calculation of Chirality Violating Proton Structure Function h1_1(x) in QCD

    Full text link
    The twist-two chirality violating proton structure function h1(x)h_1(x) measurable in the polarized Drell-Yan process is calculated by means of QCD sum rules at intermediate xx, 0.3<x<0.70.3 < x < 0.7 and Q2≈5−10GeV2Q^2 \approx 5-10 GeV^2.Comment: 12 pages + 6 figures , LaTeX, preprint LMU-01-94. a few additions to the text; the figures have been added as uuencoded fil

    Dijet Production at Large Rapidity Intervals

    Full text link
    We examine dijet production at large rapidity intervals at Tevatron energies, by using the theory of Lipatov and collaborators which resums the leading powers of the rapidity interval. We analyze the growth of the Mueller-Navelet KK-factor in this context and find it to be negligible. However, we do find a considerable enhancement of jet production at large transverse momenta. In addition, we show that the correlation in transverse momentum and azimuthal angle of the tagging jets fades away as the rapidity interval is increased.Comment: 12 pages, preprint DESY 93-139, SCIPP 93/3

    Superconductivity by long-range color magnetic interaction in high-density quark matter

    Get PDF
    We argue that in quark matter at high densities, the color magnetic field remains unscreened and leads to the phenomenon of color superconductivity. Using the renormalization group near the Fermi surface, we find that the long-range nature of the magnetic interaction changes the asymptotic behavior of the gap Δ\Delta at large chemical potential ÎŒ\mu qualitatively. We find Δ∌Όg−5exp⁥(−3π221g)\Delta\sim\mu g^{-5}\exp(-{3\pi^2\over\sqrt{2}}{1\over g}), where gg is the small gauge coupling. We discuss the possibility of breaking rotational symmetry by the formation of a condensate with nonzero angular momentum, as well as interesting parallels to some condensed matter systems with long-range forces.Comment: 14 pages, REVTEX, uses eps

    Higher-Order QCD Corrections to Inclusive Particle Production in p anti-p Collisions

    Full text link
    Inclusive single-particle production cross sections have been calculated including higher-order QCD corrections. Transverse-momentum and rapidity distributions are presented and the scale dependence is studied. The results are compared with experimental data from the CERN S(p anti-p)S Collider and the Fermilab Tevatron.Comment: 28 pages, [12 uuencoded PS figures, 3 available under request]. Preprint DESY 92-13

    Renormalization Group and Decoupling in Curved Space: II. The Standard Model and Beyond

    Full text link
    We continue the study of the renormalization group and decoupling of massive fields in curved space, started in the previous article and analyse the higher derivative sector of the vacuum metric-dependent action of the Standard Model. The QCD sector at low-energies is described in terms of the composite effective fields. For fermions and scalars the massless limit shows perfect correspondence with the conformal anomaly, but similar limit in a massive vector case requires an extra compensating scalar. In all three cases the decoupling goes smoothly and monotonic. A particularly interesting case is the renormalization group flow in the theory with broken supersymmetry, where the sign of one of the beta-functions changes on the way from the UV to IR.Comment: 27 pages, 8 figure

    Current in the light-front Bethe-Salpeter formalism II: Applications

    Full text link
    We pursue applications of the light-front reduction of current matrix elements in the Bethe-Salpeter formalism. The normalization of the reduced wave function is derived from the covariant framework and related to non-valence probabilities using familiar Fock space projection operators. Using a simple model, we obtain expressions for generalized parton distributions that are continuous. The non-vanishing of these distributions at the crossover between kinematic regimes (where the plus component of the struck quark's momentum is equal to the plus component of the momentum transfer) is tied to higher Fock components. Moreover continuity holds due to relations between Fock components at vanishing plus momentum. Lastly we apply the light-front reduction to time-like form factors and derive expressions for the generalized distribution amplitudes in this model.Comment: 12 pages, 6 figures, RevTex

    Neoproterozoic tectonic geography of the south-east Congo Craton in Zambia as deduced from the age and composition of detrital zircons

    Get PDF
    Available online 10 August 2018The Southern Irumide Belt (SIB) is an orogenic belt consisting of a number of lithologically varied Mesoproterozoic and Neoproterozoic terranes that were thrust upon each other. The belt lies along the southwest margin of the Archaean to Proterozoic Congo Craton, and bears a Neoproterozoic tectono-thermal overprint relating to the Neoproterozoic–Cambrian collision between the Congo and Kalahari cratons. It preserves a record of about 500 million years of plate interaction along this part of the Congo margin. Detrital zircon samples from the SIB were analysed for U–Pb and Lu–Hf isotopes, as well as trace element compositions. These data are used to constrain sediment-source relationships between SIB terranes and other Gondwanan terranes such as the local Congo Craton and Irumide belt and wider afield to Madagascar (Azania) and India. These correlations are then used to interpret the Mesoproterozoic to Neoproterozoic affinity of the rocks and evolution of the region. Detrital zircon samples from the Chewore–Rufunsa and Kacholola (previously referred to as Luangwa–Nyimba) terranes of the SIB yield zircon U–Pb age populations and evolved ΔHf(t) values that are similar to the Muva Supergroup found throughout eastern Zambia, primarily correlating with Ubendian–Usagaran (ca. 2.05–1.80 Ga) phase magmatism and a cryptic basement terrane that has been suggested to underlie the Bangweulu Block and Irumide Belt. These data suggest that the SIB was depositionally connected to the Congo Craton throughout the Mesoproterozoic. The more eastern Nyimba–Sinda terrane of the SIB (previously referred to as Petauke–Sinda terrane) records detrital zircon ages and ΔHf(t) values that correlate with ca. 1.1–1.0 Ga magmatism exposed elsewhere in the SIB and Irumide Belt. We ascribe this difference in age populations to the polyphase development of the province, where the sedimentary and volcanic rocks of the Nyimba–Sinda terrane accumulated in extensional basins that developed in the Neoproterozoic. Such deposition would have occurred following late-Mesoproterozoic magmatism that is widespread throughout both the Irumide and Southern Irumide Belts, presently considered to have occurred in response to collision between a possible microcontinental mass and the Irumide Belt. This interpretation implies a multi-staged evolution of the ocean south of the Congo Craton during the mid-Mesoproterozoic to late-Neoproterozoic, which ultimately closed during collision between the Congo and Kalahari cratons.Brandon L. Alessio, Alan S. Collins, Peter Siegfried, Stijn Glorie, Bert De Waele, Justin Payne, Donnelly B. Archibal

    Factorizing the hard and soft spectator scattering contributions for the nucleon form factor F_1 at large Q^2

    Full text link
    We investigate the soft spectator scattering contribution for the FF F1F_{1}. We focus our attention on factorization of the hard-collinear scale ∌QΛ\sim Q\Lambda corresponding to transition from SCET-I to SCET-II. We compute the leading order jet functions and find that the convolution integrals over the soft fractions are logarithmically divergent. This divergency is the consequence of the boost invariance and does not depend on the model of the soft correlation function describing the soft spectator quarks. Using as example a two-loop diagram we demonstrated that such a divergency corresponds to the overlap of the soft and collinear regions. As a result one obtains large rapidity logarithm which must be included in the correct factorization formalism. We conclude that a consistent description of the factorization for F1F_{1} implies the end-point collinear divergencies in the hard and soft spectator contributions, i.e. convolution integrals with respect to collinear fractions are not well-defined. Such scenario can only be realized when the twist-3 nucleon distribution amplitude has specific end-point behavior which differs from one expected from the evolution of the nucleon distribution amplitude. Such behavior leads to the violation of the collinear factorization for the hard spectator scattering contribution. We suggest that the soft spectator scattering and chiral symmetry breaking provide the mechanism responsible for the violation of collinear factorization in case of form factor F1F_{1}.Comment: 25 pages, 6 figures, text is improved, few typos corrected, one figure added, statement about end-point behavior of the nucleon DA is formulated more accuratel

    Generation of Bianchi type V cosmological models with varying Λ\Lambda-term

    Full text link
    Bianchi type V perfect fluid cosmological models are investigated with cosmological term Λ\Lambda varying with time. Using a generation technique (Camci {\it et al.}, 2001), it is shown that the Einstein's field equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. The cosmological constant is found to be decreasing function of time, which is supported by results from recent type Ia supernovae observations. Some physical aspects of the models are also discussed.Comment: 16 pages, 3 figures, submitted to CJ
    • 

    corecore