81 research outputs found
Noise delayed decay of unstable states: theory versus numerical simulations
We study the noise delayed decay of unstable nonequilibrium states in
nonlinear dynamical systems within the framework of the overdamped Brownian
motion model. We give the exact expressions for the decay times of unstable
states for polynomial potential profiles and obtain nonmonotonic behavior of
the decay times as a function of the noise intensity for the unstable
nonequilibrium states. The analytical results are compared with numerical
simulations.Comment: 9 pages, 6 figures, in press in J. Phys.
Chaotic Free-Space Laser Communication over Turbulent Channel
The dynamics of errors caused by atmospheric turbulence in a
self-synchronizing chaos based communication system that stably transmits
information over a 5 km free-space laser link is studied experimentally.
Binary information is transmitted using a chaotic sequence of short-term pulses
as carrier. The information signal slightly shifts the chaotic time position of
each pulse depending on the information bit. We report the results of an
experimental analysis of the atmospheric turbulence in the channel and the
impact of turbulence on the Bit-Error-Rate (BER) performance of this chaos
based communication system.Comment: 4 pages, 5 figure
Dynamics of localized structures in vector waves
Dynamical properties of topological defects in a twodimensional complex
vector field are considered. These objects naturally arise in the study of
polarized transverse light waves. Dynamics is modeled by a Vector Complex
Ginzburg-Landau Equation with parameter values appropriate for linearly
polarized laser emission. Creation and annihilation processes, and
selforganization of defects in lattice structures, are described. We find
"glassy" configurations dominated by vectorial defects and a melting process
associated to topological-charge unbinding.Comment: 4 pages, 5 figures included in the text. To appear in Phys. Rev.
Lett. (2000). Related material at http://www.imedea.uib.es/Nonlinear and
http://www.imedea.uib.es/Photonics . In this new version, Fig. 3 has been
replaced by a better on
Experimental evidence of stochastic resonance without tuning due to non Gaussian noises
In order to test theoretical predictions, we have studied the phenomenon of
stochastic resonance in an electronic experimental system driven by white non
Gaussian noise. In agreement with the theoretical predictions our main findings
are: an enhancement of the sensibility of the system together with a remarkable
widening of the response (robustness). This implies that even a single resonant
unit can reach a marked reduction in the need of noise tuning.Comment: 4 pages, 3 figure
Restricted feedback control of one-dimensional maps
Dynamical control of biological systems is often restricted by the practical
constraint of unidirectional parameter perturbations. We show that such a
restriction introduces surprising complexity to the stability of
one-dimensional map systems and can actually improve controllability. We
present experimental cardiac control results that support these analyses.
Finally, we develop new control algorithms that exploit the structure of the
restricted-control stability zones to automatically adapt the control feedback
parameter and thereby achieve improved robustness to noise and drifting system
parameters.Comment: 29 pages, 9 embedded figure
Transforming chaos to periodic oscillations
We demonstrate that the dynamics of an autonomous chaotic class C laser can be controlled to a periodic state via external modulation of the pump. In the absence of modulation, above the chaos threshold, the laser exhibits Lorenz-like chaotic pulsations. The average amplitude and frequency of these pulsations depend on the pump power. We find that there exist parameter windows where modulation of the pump power extinguishes the chaos in favor of simpler periodic behavior. Moreover we find a number of locking ratios between the pump and laser output follow the Farey sequence
Physics and Applications of Laser Diode Chaos
An overview of chaos in laser diodes is provided which surveys experimental
achievements in the area and explains the theory behind the phenomenon. The
fundamental physics underpinning this behaviour and also the opportunities for
harnessing laser diode chaos for potential applications are discussed. The
availability and ease of operation of laser diodes, in a wide range of
configurations, make them a convenient test-bed for exploring basic aspects of
nonlinear and chaotic dynamics. It also makes them attractive for practical
tasks, such as chaos-based secure communications and random number generation.
Avenues for future research and development of chaotic laser diodes are also
identified.Comment: Published in Nature Photonic
- …