81 research outputs found

    Antioxidant and UV-Blocking Functionalized Poly(Butylene Succinate) Films

    Get PDF
    The introduction of a limited number of functional groups on poly(butylene succinate) (PBS) chains by covalent bonding can impart new properties to the polymer without modifying its thermal and mechanical properties. In pursuit of a viable approach to obtain light- and heat-stabilized PBS samples, the nitroxide radical coupling (NRC) reaction between PBS macroradicals and the 3,5-di-tert-butyl-4-hydroxybenzoyl-2,2,6,6-tetramethylpiperidine-1-oxyl radical (BHB-TEMPO), a functionalizing agent bearing a sterically-hindered antioxidant phenol moiety, is here proposed. The reaction was initiated by peroxide and carried out in solution and in a melt. The functionalized materials were characterized by UV-visible spectroscopy (UV-Vis), proton nuclear magnetic resonance (1H-NMR), and size exclusion chromatography (SEC) analysis to gain structural information and by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) to investigate the thermal properties. In addition, films of the samples were subjected to thermal and photo-oxidative aging to assess their resistance to degradative processes. Finally, the PBS film with the highest degree of functionalization showed the ability to protect β-carotene, a molecule found in food and drugs and that is very sensitive to UV light, from degradation. This result suggests the use of this material (either alone or blended with other biopolyesters) for biodegradable and compostable active packaging

    Binary green blends of poly(Lactic acid) with poly(butylene adipate-co-butylene terephthalate) and poly(butylene succinate-co-butylene adipate) and their nanocomposites

    Get PDF
    Poly(lactic acid) (PLA) is the most widely produced biobased, biodegradable and biocompatible polyester. Despite many of its properties are similar to those of common petroleum-based polymers, some drawbacks limit its utilization, especially high brittleness and low toughness. To overcome these problems and improve the ductility and the impact resistance, PLA is often blended with other biobased and biodegradable polymers. For this purpose, poly(butylene adipate-co-butylene terephthalate) (PBAT) and poly(butylene succinate-co-butylene adipate) (PBSA) are very advantageous copolymers, because their toughness and elongation at break are complementary to those of PLA. Similar to PLA, both these copolymers are biodegradable and can be produced from annual renewable resources. This literature review aims to collect results on the mechanical, thermal and morphological properties of PLA/PBAT and PLA/PBSA blends, as binary blends with and without addition of coupling agents. The effect of different compatibilizers on the PLA/PBAT and PLA/PBSA blends properties is here elucidated, to highlight how the PLA toughness and ductility can be improved and tuned by using appropriate additives. In addition, the incorporation of solid nanoparticles to the PLA/PBAT and PLA/PBSA blends is discussed in detail, to demonstrate how the nanofillers can act as morphology stabilizers, and so improve the properties of these PLA-based formulations, especially mechanical performance, thermal stability and gas/vapor barrier properties. Key points about the biodegradation of the blends and the nanocomposites are presented, together with current applications of these novel green materials

    Thermo-oxidative resistant nanocomposites containing novel hybrid-nanoparticles based on natural polyphenol and carbon nanotubes

    Get PDF
    Quercetin (Q), a natural antioxidant molecule, is physically immobilized onto multi-walled carbon nanotubes (CNTs) bearing covalently-linked long-chain alkyl functional groups, and the so obtained hybrid-nanoparticles are used to prepare Ultra High Molecular Weight PolyEthylene-based nanocomposite films with enhanced thermo-oxidation resistance. The effective immobilization of the Q molecules is confirmed by spectroscopic (micro-Raman, ATR-FTIR, and FTIR) and thermo-gravimetric analyses, and the influence of the nanoparticles on the rheological behaviour and thermo-oxidative stability of the nanocomposites are investigated. Rheological analyses (linear viscoelasticity and stress relaxation tests) and morphological observations reveal that the Q-functionalized CNTs disperse better than bare CNTs in the host matrix. Quercetin confirms to be an excellent antioxidant for polyethylene, but the study of the thermo-oxidation behaviour shows that a remarkable stabilizing action only emerges when Q is physically immobilized on the CNTs. In particular, a ten-fold increase of the onset of degradation phenomena in thermo-oxidative environment was found. Such an excellent result is due to a synergic effect stemming from the physical interaction between Q and CNTs, which cannot provide a similar stabilizing action if used separately. In particular, we argue that the process of physical immobilization of the Q molecules causes the formation of structural defects onto outer CNTs surfaces, thus remarkably improving the CNTs radical scavenging activity and probably promoting Q regeneration. In addition, CNTs seem acting as efficient nano-carriers for the quercetin molecules, improving the dispersion of the latter in the host matrix in spite of their poor solubility
    • …
    corecore