16,695 research outputs found
X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: Application to (Gd,Nd)5Si4 compounds
Representative compounds of the new family of magnetic materials Gd5-xNdxSi4
were analyzed by X-ray diffraction at the XRD1 beamline at LNLS. To reduce
X-ray absorption, thin layers of the powder samples were mounted outside the
capillaries and measured in Debye-Scherrer geometry as usual. The X-ray
diffraction analyses and the magnetometry results indicate that the behavior of
the magnetic transition temperature as a function of Nd content may be directly
related to the average of the four smallest interatomic distances between
different rare earth sites of the majority phase of each compound. The quality
and consistency of the results show that the XRD1 beamline is able to perform
satisfactory X-ray diffraction experiments on high-absorption materials even
off the best conditions.Comment: 12 pages, 3 figures, 3 table
Does gradual diffusion of information really matters: The bankruptcy case
This paper tests to what extent the Hong and Stein (1999) model explains the stock price performance of firms filing for Chapter 11 bankruptcy. In line with the model’s main prediction, I find that the market severely misprices (correctly prices) the bankrupt firms for which information is likely to diffuse slowly (rapidly) across investors. My key finding is robust to a range of alternative methods for adjusting for risk and different periods for computing the abnormal stock returns. My innovative framework provides an acid test of the predictive ability of the Hong and Stein (1999) model, with my results suggesting that it offers important insight into the workings of financial markets, even in the very extreme setting I consider.Corporate Bankruptcy, Gradual Diffusion of Information, Event Study, Behavioral Binance Models.
Robustness of bipartite Gaussian entangled beams propagating in lossy channels
Subtle quantum properties offer exciting new prospects in optical
communications. Quantum entanglement enables the secure exchange of
cryptographic keys and the distribution of quantum information by
teleportation. Entangled bright beams of light attract increasing interest for
such tasks, since they enable the employment of well-established classical
communications techniques. However, quantum resources are fragile and undergo
decoherence by interaction with the environment. The unavoidable losses in the
communication channel can lead to a complete destruction of useful quantum
properties -- the so-called "entanglement sudden death". We investigate the
precise conditions under which this phenomenon takes place for the simplest
case of two light beams and demonstrate how to produce states which are robust
against losses. Our study sheds new light on the intriguing properties of
quantum entanglement and how they may be tamed for future applications.Comment: To be published - Nature Photonic
- …