845 research outputs found
Recommended from our members
Sporormiella as a tool for detecting the presence of large herbivores in the Neotropics
The reliability of using the abundance of Sporormiella spores as a proxy for the presence and abundance of megaherbivores was tested in southern Brazil. Mud-water interface samples from nine lakes, in which cattle-use was categorized as high, medium, or low, were assayed for Sporormiella representation. The sampling design allowed an analysis of both the influence of the number of animals using the shoreline and the distance of the sampling site from the nearest shoreline. Sporormiella was found to be a reliable proxy for the presence of large livestock. The concentration and abundance of spores declined from the edge of the lake toward the center, with the strongest response being in sites with high livestock use. Consistent with prior studies in temperate regions, we find that Sporormiella spores are a useful proxy to study the extinction of Pleistocene megafauna or the arrival of European livestock in Neotropical landscapes
The inpatient burden of abdominal and gynecological adhesiolysis in the US
<p>Abstract</p> <p>Background</p> <p>Adhesions are fibrous bands of scar tissue, often a result of surgery, that form between internal organs and tissues, joining them together abnormally. Postoperative adhesions frequently occur following abdominal surgery, and are associated with a large economic burden. This study examines the inpatient burden of adhesiolysis in the United States (i.e., number and rate of events, cost, length of stay [LOS]).</p> <p>Methods</p> <p>Hospital discharge data for patients with primary and secondary adhesiolysis were analyzed using the 2005 Healthcare Cost and Utilization Project's Nationwide Inpatient Sample. Procedures were aggregated by body system.</p> <p>Results</p> <p>We identified 351,777 adhesiolysis-related hospitalizations: 23.2% for primary and 76.8% for secondary adhesiolysis. The average LOS was 7.8 days for primary adhesiolysis. We found that 967,332 days of care were attributed to adhesiolysis-related procedures, with inpatient expenditures totaling 1.4 billion for primary adhesiolysis; 220 million in attributable costs.</p> <p>Conclusions</p> <p>Adhesiolysis remain an important surgical problem in the United States. Hospitalization for this condition leads to high direct surgical costs, which should be of interest to providers and payers.</p
Repeatability and Longitudinal Assessment of Foveal Cone Structure in Cngb3-associated Achromatopsia
PURPOSE: Congenital achromatopsia is an autosomal recessive disease causing substantial reduction or complete absence of cone function. Although believed to be a relatively stationary disorder, questions remain regarding the stability of cone structure over time. In this study, the authors sought to assess the repeatability of and examine longitudinal changes in measurements of central cone structure in patients with achromatopsia. METHODS: Forty-one subjects with CNGB3-associated achromatopsia were imaged over a period of between 6 and 26 months using optical coherence tomography and adaptive optics scanning light ophthalmoscopy. Outer nuclear layer (ONL) thickness, ellipsoid zone (EZ) disruption, and peak foveal cone density were assessed. RESULTS: ONL thickness increased slightly compared with baseline (0.184 μm/month, P = 0.02). The EZ grade remained unchanged for 34/41 subjects. Peak foveal cone density did not significantly change over time (mean change 1% per 6 months, P = 0.126). CONCLUSION: Foveal cone structure showed little or no change in this group of subjects with CNGB3-associated achromatopsia. Over the time scales investigated (6–26 months), achromatopsia seems to be a structurally stable condition, although longer-term follow-up is needed. These data will be useful in assessing foveal cone structure after therapeutic intervention
Residual Foveal Cone Structure in CNGB3-Associated Achromatopsia
PURPOSE: Congenital achromatopsia (ACHM) is an autosomal recessive disorder in which cone function is absent or severely reduced. Gene therapy in animal models of ACHM have shown restoration of cone function, though translation of these results to humans relies, in part, on the presence of viable cone photoreceptors at the time of treatment. Here, we characterized residual cone structure in subjects with CNGB3-associated ACHM. METHODS: High-resolution imaging (optical coherence tomography [OCT] and adaptive optics scanning light ophthalmoscopy [AOSLO]) was performed in 51 subjects with CNGB3-associated ACHM. Peak cone density and inter-cone spacing at the fovea was measured using split-detection AOSLO. Foveal outer nuclear layer thickness was measured in OCT images, and the integrity of the photoreceptor layer was assessed using a previously published OCT grading scheme RESULTS: Analyzable images of the foveal cones were obtained in 26 of 51 subjects, with nystagmus representing the major obstacle to obtaining high-quality images. Peak foveal cone density ranged from 7,273 to 53,554 cones/mm2, significantly lower than normal (range, 84,733–234,391 cones/mm2), with the remnant cones being either contiguously or sparsely arranged. Peak cone density was correlated with OCT integrity grade; however, there was overlap of the density ranges between OCT grades. CONCLUSIONS: The degree of residual foveal cone structure varies greatly among subjects with CNGB3-associated ACHM. Such measurements may be useful in estimating the therapeutic potential of a given retina, providing affected individuals and physicians with valuable information to more accurately assess the risk-benefit ratio as they consider enrolling in experimental gene therapy trials. (www.clinicaltrials.gov, NCT01846052.
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
OneG: A Computational Tool for Predicting Cryptic Intermediates in the Unfolding Kinetics of Proteins under Native Conditions
Understanding the relationships between conformations of proteins and their stabilities is one key to address the protein folding paradigm. The free energy change (ΔG) of unfolding reactions of proteins is measured by traditional denaturation methods and native hydrogen-deuterium (H/D) exchange methods. However, the free energy of unfolding (ΔGU) and the free energy of exchange (ΔGHX) of proteins are not in good agreement, though the experimental conditions of both methods are well matching to each other. The anomaly is due to any one or combinations of the following reasons: (i) effects of cis-trans proline isomerisation under equilibrium unfolding reactions of proteins (ii) inappropriateness in accounting the baselines of melting curves (iii) presence of cryptic intermediates, which may elude the melting curve analysis and (iv) existence of higher energy metastable states in the H/D exchange reactions of proteins. Herein, we have developed a novel computational tool, OneG, which accounts the discrepancy between ΔGU and ΔGHX of proteins by systematically accounting all the four factors mentioned above. The program is fully automated and requires four inputs: three-dimensional structures of proteins, ΔGU, ΔGU* and residue-specific ΔGHX determined under EX2-exchange conditions in the absence of denaturants. The robustness of the program has been validated using experimental data available for proteins such as cytochrome c and apocytochrome b562 and the data analyses revealed that cryptic intermediates of the proteins detected by the experimental methods and the cryptic intermediates predicted by the OneG for those proteins were in good agreement. Furthermore, using OneG, we have shown possible existence of cryptic intermediates and metastable states in the unfolding pathways of cardiotoxin III and cobrotoxin, respectively, which are homologous proteins. The unique application of the program to map the unfolding pathways of proteins under native conditions have been brought into fore and the program is publicly available at http://sblab.sastra.edu/oneg.htm
The design and testing of a novel mechanomyogram-driven switch controlled by small eyebrow movements
<p>Abstract</p> <p>Background</p> <p>Individuals with severe physical disabilities and minimal motor behaviour may be unable to use conventional mechanical switches for access. These persons may benefit from access technologies that harness the volitional activity of muscles. In this study, we describe the design and demonstrate the performance of a binary switch controlled by mechanomyogram (MMG) signals recorded from the frontalis muscle during eyebrow movements.</p> <p>Methods</p> <p>Muscle contractions, detected in real-time with a continuous wavelet transform algorithm, were used to control a binary switch for computer access. The automatic selection of scale-specific thresholds reduced the effect of artefact, such as eye blinks and head movement, on the performance of the switch. Switch performance was estimated by cued response-tests performed by eleven participants (one with severe physical disabilities).</p> <p>Results</p> <p>The average sensitivity and specificity of the switch was 99.7 ± 0.4% and 99.9 ± 0.1%, respectively. The algorithm performance was robust against typical participant movement.</p> <p>Conclusions</p> <p>The results suggest that the frontalis muscle is a suitable site for controlling the MMG-driven switch. The high accuracies combined with the minimal requisite effort and training show that MMG is a promising binary control signal. Further investigation of the potential benefits of MMG-control for the target population is warranted.</p
Detection of subclinical keratoconus using biometric parameters
The validation of innovative methodologies for diagnosing keratoconus in its earliest stages is of major interest in ophthalmology. So far, subclinical keratoconus diagnosis has been made by combining several clinical criteria that allowed the definition of indices and decision trees, which proved to be valuable diagnostic tools. However, further improvements need to be made in order to reduce the risk of ectasia in patients who undergo corneal refractive surgery. The purpose of this work is to report a new subclinical keratoconus detection method based in the analysis of certain biometric parameters extracted from a custom 3D corneal model. This retrospective study includes two groups: the first composed of 67 patients with healthy eyes and normal vision, and the second composed of 24 patients with subclinical keratoconus and normal vision as well. The proposed detection method generates a 3D custom corneal model using computer-aided graphic design (CAGD) tools and corneal surfaces’ data provided by a corneal tomographer. Defined bio-geometric parameters are then derived from the model, and statistically analysed to detect any minimal corneal deformation. The metric which showed the highest area under the receiver-operator curve (ROC) was the posterior apex deviation. This new method detected differences between healthy and sub-clinical keratoconus corneas by using abnormal corneal topography and normal spectacle corrected vision, enabling an integrated tool that facilitates an easier diagnosis and follow-up of keratoconus.This publication has been carried out in the framework of the Thematic Network for Co-Operative Research in Health (RETICS) reference number RD16/0008/0012 financed by the Carlos III Health Institute-General Subdirection of Networks and Cooperative Investigation Centers (R&D&I National Plan 2013–2016) and the European Regional Development Fund (FEDER)
Control of Glycogen Content in Retina: Allosteric Regulation of Glycogen Synthase
Retinal tissue is exceptional because it shows a high level of energy metabolism. Glycogen content represents the only energy reserve in retina, but its levels are limited. Therefore, elucidation of the mechanisms controlling glycogen content in retina will allow us to understand retina response under local energy demands that can occur under normal and pathological conditions. Thus, we studied retina glycogen levels under different experimental conditions and correlated them with glucose-6-phosphate (G-6-P) content and glycogen synthase (GS) activity
Inhibition of sialidase activity and cellular invasion by the bacterial vaginosis pathogen Gardnerella vaginalis
Bacterial vaginosis is a genital tract infection, thought to be caused by transformation of a lactobacillus-rich flora to a dysbiotic microbiota enriched in mixed anaerobes. The most prominent of these is Gardnerella vaginalis (GV), an anaerobic pathogen that produces sialidase enzyme to cleave terminal sialic acid residues from human glycans. Notably, high sialidase activity is associated with preterm birth and low birthweight. We explored the potential of the sialidase inhibitor Zanamavir against GV whole cell sialidase activity using methyl-umbelliferyl neuraminic acid (MU-NANA) cleavage assays, with Zanamavir causing a 30% reduction in whole cell GV sialidase activity (p < 0.05). Furthermore, cellular invasion assays using HeLa cervical epithelial cells, infected with GV, demonstrated that Zanamivir elicited a 50% reduction in cell association and invasion (p < 0.05). Our data thus highlight that pharmacological sialidase inhibitors are able to modify BV-associated sialidase activity and influence host-pathogen interactions and may represent novel therapeutic adjuncts
- …