142 research outputs found
Prelamin A mediates inflammation in dilated and HIV associated cardiomyopathies
Cardiomyopathies are complex heart muscle diseases that can be inherited or acquired. Dilated cardiomyopathy can result from mutations in LMNA, encoding the nuclear intermediate filament proteins lamin A/C. Some LMNA mutations lead to accumulation of the lamin A precursor, prelamin A, which is disease causing in a number of tissues yet its impact upon the heart is unknown. Here we discovered myocardial prelamin A accumulation occurred in a case of dilated cardiomyopathy and show that a novel mouse model of cardiac specific prelamin A accumulation exhibited a phenotype consistent with โinflammatory cardiomyopathyโ which we observed to be similar to HIV associated cardiomyopathy, an acquired disease state. Numerous HIV protease therapies are known to inhibit ZMPSTE24, the enzyme responsible for prelamin A processing, and we confirmed that accumulation of prelamin A occurred in HIV+ patient cardiac biopsies. These findings: (1) confirm a unifying pathological role for prelamin A common to genetic and acquired cardiomyopathies; (2) have implications for the management of HIV patients with cardiac disease suggesting protease inhibitors should be replaced with alternative therapies i.e. non-nucleoside reverse transcriptase inhibitors; and (3) suggest that targeting inflammation may be a useful treatment strategy for certain forms of inherited cardiomyopathy
Profiles of physical, emotional and psychosocial wellbeing in the Lothian birth cohort 1936
<p>Abstract</p> <p>Background</p> <p>Physical, emotional, and psychosocial wellbeing are important domains of function. The aims of this study were to explore the existence of separable groups among 70-year olds with scores representing physical function, perceived quality of life, and emotional wellbeing, and to characterise any resulting groups using demographic, personality, cognition, health and lifestyle variables.</p> <p>Methods</p> <p>We used latent class analysis (LCA) to identify possible groups.</p> <p>Results</p> <p>Results suggested there were 5 groups. These included High (n = 515, 47.2% of the sample), Average (n = 417, 38.3%), and Poor Wellbeing (n = 37, 3.4%) groups. The two other groups had contrasting patterns of wellbeing: one group scored relatively well on physical function, but low on emotional wellbeing (Good Fitness/ Low Spirits,n = 60, 5.5%), whereas the other group showed low physical function but relatively well emotional wellbeing (Low Fitness/Good Spirits, n = 62, 5.7%). Salient characteristics that distinguished all the groups included smoking and drinking behaviours, personality, and illness.</p> <p>Conclusions</p> <p>Despite there being some evidence of these groups, the results also support a largely one-dimensional construct of wellbeing in old ageโfor the domains assessed hereโthough with some evidence that some individuals have uneven profiles.</p
A whole-cell biosensor for the detection of gold
Geochemical exploration for gold (Au) is becoming increasingly important to the mining industry. Current processes for Au analyses require sampling materials to be taken from often remote localities. Samples are then transported to a laboratory equipped with suitable analytical facilities, such as Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) or Instrumental Neutron Activation Analysis (INAA). Determining the concentration of Au in samples may take several weeks, leading to long delays in exploration campaigns. Hence, a method for the on-site analysis of Au, such as a biosensor, will greatly benefit the exploration industry. The golTSB genes from Salmonella enterica serovar typhimurium are selectively induced by Au(I/III)-complexes. In the present study, the golTSB operon with a reporter gene, lacZ, was introduced into Escherichia coli. The induction of golTSB::lacZ with Au(I/III)-complexes was tested using a colorimetric ฮฒ-galactosidase and an electrochemical assay. Measurements of the ฮฒ-galactosidase activity for concentrations of both Au(I)- and Au(III)-complexes ranging from 0.1 to 5 ยตM (equivalent to 20 to 1000 ng gโปยน or parts-per-billion (ppb)) were accurately quantified. When testing the ability of the biosensor to detect Au(I/III)-complexes(aq) in the presence of other metal ions (Ag(I), Cu(II), Fe(III), Ni(II), Co(II), Zn, As(III), Pb(II), Sb(III) or Bi(III)), cross-reactivity was observed, i.e. the amount of Au measured was either under- or over-estimated. To assess if the biosensor would work with natural samples, soils with different physiochemical properties were spiked with Au-complexes. Subsequently, a selective extraction using 1 M thiosulfate was applied to extract the Au. The results showed that Au could be measured in these extracts with the same accuracy as ICP-MS (P<0.05). This demonstrates that by combining selective extraction with the biosensor system the concentration of Au can be accurately measured, down to a quantification limit of 20 ppb (0.1 ยตM) and a detection limit of 2 ppb (0.01 ยตM).Carla M. Zammit, Davide Quaranta, Shane Gibson, Anita J. Zaitouna, Christine Ta, Joรซl Brugger, Rebecca Y. Lai, Gregor Grass, Frank Reit
Comparison of Human Memory CD8 T Cell Responses to Adenoviral Early and Late Proteins in Peripheral Blood and Lymphoid Tissue
Treatment of invasive adenovirus (Ad) disease in hematopoietic stem cell transplant (SCT) recipients with capsid protein hexon-specific donor T cells is under investigation. We propose that cytotoxic T cells (CTLs) targeted to the late protein hexon may be inefficient in vivo because the early Ad protein E3-19K downregulates HLA class I antigens in infected cells. In this study, CD8+ T cells targeted to highly conserved HLA A2-restricted epitopes from the early regulatory protein DNA polymerase (P-977) and late protein hexon (H-892) were compared in peripheral blood (PB) and tonsils of naturally infected adults. In tonsils, epitope-specific pentamers detected a significantly higher frequency of P-977+CD8+ T cells compared to H-892+CD8+ T cells; this trend was reversed in PB. Tonsil epitope-specific CD8+ T cells expressed IFN-ฮณ and IL-2 but not perforin or TNF-ฮฑ, whereas PB T cells were positive for IFN-ฮณ, TNF-ฮฑ, and perforin. Tonsil epitope-specific T cells expressed lymphoid homing marker CCR7 and exhibited lower levels of the activation marker CD25 but higher proliferative potential than PB T cells. Finally, in parallel with the kinetics of mRNA expression, P-977-specific CTLs lysed targets as early as 8 hrs post infection. In contrast, H-892-specific CTLs did not kill unless infected fibroblasts were pretreated with IFN-ฮณ to up regulate HLA class I antigens, and cytotoxicity was delayed until 16โ24 hours. These data show that, in contrast to hexon CTLs, central memory type DNA polymerase CTLs dominate the lymphoid compartment and kill fibroblasts earlier after infection without requiring exogenous IFN-ฮณ. Thus, use of CTLs targeted to both early and late Ad proteins may improve the efficacy of immunotherapy for life-threatening Ad disease in SCT recipients
The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration
Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration
Prolonged Antigen Presentation Is Required for Optimal CD8+ T Cell Responses against Malaria Liver Stage Parasites
Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunizationโa remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naรฏve animals. Finally, persisting antigen was able to prime naรฏve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen
Uncoordinated Transcription and Compromised Muscle Function in the Lmna-Null Mouse Model of Emery-Dreifuss Muscular Dystrophy
LMNA encodes both lamin A and C: major components of the nuclear lamina. Mutations in LMNA underlie a range of tissue-specific degenerative diseases, including those that affect skeletal muscle, such as autosomal-Emery-Dreifuss muscular dystrophy (A-EDMD) and limb girdle muscular dystrophy 1B. Here, we examine the morphology and transcriptional activity of myonuclei, the structure of the myotendinous junction and the muscle contraction dynamics in the lmna-null mouse model of A-EDMD. We found that there were fewer myonuclei in lmna-null mice, of which โผ50% had morphological abnormalities. Assaying transcriptional activity by examining acetylated histone H3 and PABPN1 levels indicated that there was a lack of coordinated transcription between myonuclei lacking lamin A/C. Myonuclei with abnormal morphology and transcriptional activity were distributed along the length of the myofibre, but accumulated at the myotendinous junction. Indeed, in addition to the presence of abnormal myonuclei, the structure of the myotendinous junction was perturbed, with disorganised sarcomeres and reduced interdigitation with the tendon, together with lipid and collagen deposition. Functionally, muscle contraction became severely affected within weeks of birth, with specific force generation dropping as low as โผ65% and โผ27% of control values in the extensor digitorum longus and soleus muscles respectively. These observations illustrate the importance of lamin A/C for correct myonuclear function, which likely acts synergistically with myotendinous junction disorganisation in the development of A-EDMD, and the consequential reduction in force generation and muscle wasting
Evaluation of the fibroblast growth factor system as a potential target for therapy in human prostate cancer
Overexpression of fibroblast growth factors (FGFs) has been implicated in prostate carcinogenesis. FGFs function via their high-affinity interactions with receptor tyrosine kinases, FGFR1โ4. Expression of FGFR1 and FGFR2 in prostate cancer (CaP) was not found to be associated with clinical parameters. In this report, we further investigated for abnormal FGFR expression in prostate cancer and explore their significance as a potential target for therapy. The expression levels of FGFR3 and FGFR4 in CaP were examined and corroborated to clinical parameters. FGFR3 immunoreactivity in benign prostatic hyperplasia (BPH) and CaP (n=26 and 57, respectively) had similar intensity and pattern. Overall, FGFR4 expression was significantly upregulated in CaP when compared to BPH. A significant positive correlation between FGFR4 expression and Gleason score was noted: Gleason score 7โ10 tumours compared to BPH (P<0.0001, Fisher's exact test), Gleason score 4โ6 tumours compared to BPH (P<0.0004), and Gleason 7โ10 compared to Gleason 4โ6 tumours (P<0.005). FGFR4 overexpression was associated with an unfavourable outcome with decreased disease-specific survival (P<0.04, log rank test). FGF-induced signalling is targeted using soluble FGF receptor (sFGFR), potent inhibitor of FGFR function. We have previously shown that sFGFR expression via a replication-deficient adenoviral vector (AdlllcRl) suppresses in vitro FGF-induced signalling and function in human CaP DU145 cells. We tested the significance of inhibiting FGF function along with conventional therapeutic modalities in CaP, and confirmed synergistic effects on in vitro cell growth (proliferation and colony formation) by combining sFGFR expression and treatment with either Paclitaxel (Taxolยฎ) or ฮณ-irradiation. In summary, our data support the model of FGF system as valid target for therapy in CaP
Dlk1 Is Necessary for Proper Skeletal Muscle Development and Regeneration
Delta-like 1homolog (Dlk1) is an imprinted gene encoding a transmembrane protein whose increased expression has been associated with muscle hypertrophy in animal models. However, the mechanisms by which Dlk1 regulates skeletal muscle plasticity remain unknown. Here we combine conditional gene knockout and over-expression analyses to investigate the role of Dlk1 in mouse muscle development, regeneration and myogenic stem cells (satellite cells). Genetic ablation of Dlk1 in the myogenic lineage resulted in reduced body weight and skeletal muscle mass due to reductions in myofiber numbers and myosin heavy chain IIB gene expression. In addition, muscle-specific Dlk1 ablation led to postnatal growth retardation and impaired muscle regeneration, associated with augmented myogenic inhibitory signaling mediated by NF-ฮบB and inflammatory cytokines. To examine the role of Dlk1 in satellite cells, we analyzed the proliferation, self-renewal and differentiation of satellite cells cultured on their native host myofibers. We showed that ablation of Dlk1 inhibits the expression of the myogenic regulatory transcription factor MyoD, and facilitated the self-renewal of activated satellite cells. Conversely, Dlk1 over-expression inhibited the proliferation and enhanced differentiation of cultured myoblasts. As Dlk1 is expressed at low levels in satellite cells but its expression rapidly increases upon myogenic differentiation in vitro and in regenerating muscles in vivo, our results suggest a model in which Dlk1 expressed by nascent or regenerating myofibers non-cell autonomously promotes the differentiation of their neighbor satellite cells and therefore leads to muscle hypertrophy
- โฆ