49 research outputs found

    Relevant but neglected habitat types by the Directive 92/43 EEC in southern Italy

    Get PDF
    The 92/43/EEC Habitats Directive is the main European Union legal tool concerning nature conservation. The habitat types listed in Annex I to the Directive are phytosociology-based. It is widely acknowledged that phytosociological analysis is a crucial approach for habitats characterization and for monitoring their conservation status. Based on bibliographic investigations and new field survey campaigns, a list of habitat types neglected by the Habitats Directive is here presented and described for southern Italy. In this paper, 8 new habitat types and 13 subtypes are proposed. For each of these proposed new habitat types, a wide range of information, including ecology, chorology, species composition, syntaxonomy, threats, and conservation status, is here provided. To supply more detailed phytogeographical and coenological information about the proposed new habitat types, distribution maps based on 10 x 10 km reference grids and phytosociological tables including unpublished releves were carried out

    Notulae to the Italian alien vascular flora: 7

    Get PDF
    In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, and status changes for Italy or for Italian administrative regions of taxa in the genera Abies, Actinidia, Alooe, Amaryllis, Anredera, Arctotheca, Bidens, Cardiospermum, Celosia, Commelina, Cotoneaster, Cyclamen, Eclipta, Euphorbia, Grevillea, Hedera, Hibiscus, Impatiens, Juglans, Kalanchoe, Koelreuteria, Lindernia, Melinis, Myriophyllum, Nandina, Nicotiana, Oenothera, Oxalis, Parthenocissus, Phoenix, Phyllanthus, Physalis, Plumbago, Pteris, Quercus, Setaria, Symphytum, Tagetes, and Washingtonia. Nomenclatural and distribution updates, published elsewhere are provided as Suppl. material 1

    Notulae to the Italian native vascular flora: 8.

    Get PDF
    In this contribution, new data concerning the distribution of native vascular flora in Italy are presented. It includes new records, confirmations, exclusions, and status changes to the Italian administrative regions for taxa in the genera Ajuga, Chamaemelum, Clematis, Convolvulus, Cytisus, Deschampsia, Eleocharis, Epipactis, Euphorbia, Groenlandia, Hedera, Hieracium, Hydrocharis, Jacobaea, Juncus, Klasea, Lagurus, Leersia, Linum, Nerium, Onopordum, Persicaria, Phlomis, Polypogon, Potamogeton, Securigera, Sedum, Soleirolia, Stachys, Umbilicus, Valerianella, and Vinca. Nomenclatural and distribution updates, published elsewhere, and corrigenda are provided as Suppl. material 1

    Notulae to the Italian native vascular flora: 8

    Get PDF
    In this contribution, new data concerning the distribution of native vascular flora in Italy are presented. It includes new records, confirmations, exclusions, and status changes to the Italian administrative regions for taxa in the genera Ajuga, Chamaemelum, Clematis, Convolvulus, Cytisus, Deschampsia, Eleocharis, Epi- pactis, Euphorbia, Groenlandia, Hedera, Hieracium, Hydrocharis, Jacobaea, Juncus, Klasea, Lagurus, Leersia, Linum, Nerium, Onopordum, Persicaria, Phlomis, Polypogon, Potamogeton, Securigera, Sedum, Soleirolia, Stachys, Umbilicus, Valerianella, and Vinca. Nomenclatural and distribution updates, published elsewhere, and corrigenda are provided as Suppl. material

    Notulae to the Italian alien vascular flora: 9

    Get PDF
    In this contribution, new data concerning the distribution of vascular flora alien to Italy are presented. It includes new records, confirmations, exclusions, and status changes for Italy or for Italian administrative regions. Furthermore, three new combinations are proposed. Nomenclatural and distribution updates published elsewhere are provided as Suppl. material 1

    Semi-Automated Image Analysis for the Assessment of Megafaunal Densities at the Arctic Deep-Sea Observatory HAUSGARTEN

    Get PDF
    Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change. Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e. overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri remain challenging, for both human observers and iSIS

    Semi-Automated Image Analysis for the Assessment of Megafaunal Densities at the Arctic Deep-Sea Observatory HAUSGARTEN

    Get PDF
    Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change. Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e. overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri remain challenging, for both human observers and iSIS
    corecore