5,955 research outputs found

    Evaluating the impact of AMPK activation, a target of metformin, on risk of cardiovascular diseases and cancer in the UK Biobank: A Mendelian randomization study

    Get PDF
    Aims/hypothesis: Whether metformin reduces cardiovascular or cancer risk is unclear owing to concerns over immortal time bias and confounding in observational studies. This study evaluated the effect of AMP-activated protein kinase (AMPK), the target of metformin, on risk of cardiovascular disease and cancer. Methods: This is a Mendelian randomisation design, using AMPK, the pharmacological target of metformin, to infer the AMPK pathway-dependent effects of metformin on risk of cardiovascular disease and cancer in participants of white British ancestry in the UK Biobank. Results: A total of 391,199 participants were included (mean age 56.9 years; 54.1% women), including 26,690 cases of type 2 diabetes, 38,098 cases of coronary artery disease and 80,941 cases of overall cancer. Genetically predicted reduction in HbA1c (%) instrumented by AMPK variants was associated with a 61% reduction in risk of type 2 diabetes (OR 0.39; 95% CI 0.20, 0.78; p = 7.69 × 10−3), a 53% decrease in the risk of coronary artery disease (OR 0.47; 95% CI 0.26, 0.84; p = 0.01) and a 44% decrease in the risk of overall cancer (OR 0.56; 95% CI 0.36, 0.85; p = 7.23 × 10−3). Results were similar using median or quartiles of AMPK score, with dose–response effects (p for trend = 4.18 × 10−3 for type 2 diabetes, 4.37 × 10−3 for coronary artery disease and 4.04 × 10−3 for overall cancer). Conclusions/interpretation: This study provides some genetic evidence that AMPK activation by metformin may protect against cardiovascular disease and cancer, which needs to be confirmed by randomised controlled trials

    Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, β-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro.This work was supported partly by Wellcome Trust award WT085162AIA and BBSRC award BB/1024631/1

    New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome.</p> <p>Results</p> <p>A switchgrass BAC library constructed by partial digestion of nuclear DNA with <it>Eco</it>RI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice <it>OsBRI1 </it>locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy.</p> <p>Conclusions</p> <p>The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring <it>OsBRI1 </it>orthologs present a glimpse into the switchgrass genome structure and complexity. Data obtained demonstrate the feasibility of using HICF fingerprinting to resolve the homoeologous chromosomes of the two distinct genomes in switchgrass, providing a robust and accurate BAC-based physical platform for this species. The genomic resources and sequence data generated will lay the foundation for deciphering the switchgrass genome and lead the way for an accurate genome sequencing strategy.</p

    Enhanced magnetoelectric effect in heterostructure of magnetostrictive alloy bars and piezoelectric single-crystal transformer

    Get PDF
    Author name used in this publication: Siu Wing OrAuthor name used in this publication: S. L. Ho2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Ehrlichia chaffeensis Transcriptome in Mammalian and Arthropod Hosts Reveals Differential Gene Expression and Post Transcriptional Regulation

    Get PDF
    BACKGROUND: Human monocytotropic ehrlichiosis is an emerging life-threatening zoonosis caused by obligately intracellular bacterium, Ehrlichia chaffeensis. E. chaffeensis is transmitted by the lone star tick, Amblyomma americanum, and replicates in mononuclear phagocytes in mammalian hosts. Differences in the E. chaffeensis transcriptome in mammalian and arthropod hosts are unknown. Thus, we determined host-specific E. chaffeensis gene expression in human monocyte (THP-1) and in Amblyomma and Ixodes tick cell lines (AAE2 and ISE6) using a whole genome microarray. METHODOLOGY/PRINCIPAL FINDINGS: The majority (∼80%) of E. chaffeensis genes were expressed during infection in human and tick cells. There were few differences observed in E. chaffeensis gene expression between the vector Amblyomma and non-vector Ixodes tick cells, but extensive host-specific and differential gene expression profiles were detected between human and tick cells, including higher transcriptional activity in tick cells and identification of gene subsets that were differentially expressed in the two hosts. Differentially and host-specifically expressed ehrlichial genes encoded major immunoreactive tandem repeat proteins (TRP), the outer membrane protein (OMP-1) family, and hypothetical proteins that were 30-80 amino acids in length. Consistent with previous observations, high expression of p28 and OMP-1B genes was detected in human and tick cells, respectively. Notably, E. chaffeensis genes encoding TRP32 and TRP47 were highly upregulated in the human monocytes and expressed as proteins; however, although TRP transcripts were expressed in tick cells, the proteins were not detected in whole cell lysates demonstrating that TRP expression was post transcriptionally regulated. CONCLUSIONS/SIGNIFICANCE: Ehrlichia gene expression is highly active in tick cells, and differential gene expression among a wide variety of host-pathogen associated genes occurs. Furthermore, we demonstrate that genes associated with host-pathogen interactions are differentially expressed and regulated by post transcriptional mechanisms

    Broadband ultrasonic linear array using ternary PIN-PMN-PT single crystal

    Get PDF
    Author name used in this publication: Siu Wing Or2012-2013 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Gene-environment correlations and causal effects of childhood maltreatment on physical and mental health: a genetically informed approach.

    Get PDF
    BACKGROUND: Childhood maltreatment is associated with poor mental and physical health. However, the mechanisms of gene-environment correlations and the potential causal effects of childhood maltreatment on health are unknown. Using genetics, we aimed to delineate the sources of gene-environment correlation for childhood maltreatment and the causal relationship between childhood maltreatment and health. METHODS: We did a genome-wide association study meta-analysis of childhood maltreatment using data from the UK Biobank (n=143 473), Psychiatric Genomics Consortium (n=26 290), Avon Longitudinal Study of Parents and Children (n=8346), Adolescent Brain Cognitive Development Study (n=5400), and Generation R (n=1905). We included individuals who had phenotypic and genetic data available. We investigated single nucleotide polymorphism heritability and genetic correlations among different subtypes, operationalisations, and reports of childhood maltreatment. Family-based and population-based polygenic score analyses were done to elucidate gene-environment correlation mechanisms. We used genetic correlation and Mendelian randomisation analyses to identify shared genetics and test causal relationships between childhood maltreatment and mental and physical health conditions. FINDINGS: Our meta-analysis of genome-wide association studies (N=185 414) identified 14 independent loci associated with childhood maltreatment (13 novel). We identified high genetic overlap (genetic correlations 0·24-1·00) among different maltreatment operationalisations, subtypes, and reporting methods. Within-family analyses provided some support for active and reactive gene-environment correlation but did not show the absence of passive gene-environment correlation. Robust Mendelian randomisation suggested a potential causal role of childhood maltreatment in depression (unidirectional), as well as both schizophrenia and ADHD (bidirectional), but not in physical health conditions (coronary artery disease, type 2 diabetes) or inflammation (C-reactive protein concentration). INTERPRETATION: Childhood maltreatment has a heritable component, with substantial genetic correlations among different operationalisations, subtypes, and retrospective and prospective reports of childhood maltreatment. Family-based analyses point to a role of active and reactive gene-environment correlation, with equivocal support for passive correlation. Mendelian randomisation supports a (primarily bidirectional) causal role of childhood maltreatment on mental health, but not on physical health conditions. Our study identifies research avenues to inform the prevention of childhood maltreatment and its long-term effects. FUNDING: Wellcome Trust, UK Medical Research Council, Horizon 2020, National Institute of Mental Health, and National Institute for Health Research Biomedical Research Centre
    corecore