44 research outputs found
In Silico Determination of Gas Permeabilities by Non-Equilibrium Molecular Dynamics: CO2 and He through PIM-1.
© 2015 by the authors; licensee MDPI, Basel, Switzerland.We study the permeation dynamics of helium and carbon dioxide through an atomistically detailed model of a polymer of intrinsic microporosity, PIM-1, via non-equilibrium molecular dynamics (NEMD) simulations. This work presents the first explicit molecular modeling of gas permeation through a high free-volume polymer sample, and it demonstrates how permeability and solubility can be obtained coherently from a single simulation. Solubilities in particular can be obtained to a very high degree of confidence and within experimental inaccuracies. Furthermore, the simulations make it possible to obtain very specific information on the diffusion dynamics of penetrant molecules and yield detailed maps of gas occupancy, which are akin to a digital tomographic scan of the polymer network. In addition to determining permeability and solubility directly from NEMD simulations, the results shed light on the permeation mechanism of the penetrant gases, suggesting that the relative openness of the microporous topology promotes the anomalous diffusion of penetrant gases, which entails a deviation from the pore hopping mechanism usually observed in gas diffusion in polymers
Acute partial Budd-Chiari syndrome and portal vein thrombosis in cytomegalovirus primary infection: a case report
BACKGROUND: Splanchnic vein thrombosis may complicate inherited thrombotic disorders. Acute cytomegalovirus infection is a rare cause of acquired venous thrombosis in the portal or mesenteric territory, but has never been described extending into a main hepatic vein. CASE PRESENTATION: A 36-year-old immunocompetent woman presented with acute primary cytomegalovirus infection in association with extensive thrombosis in the portal and splenic vein. In addition, a fresh thrombus was evident in the right hepatic vein. A thorough evaluation for a hypercoagulable state was negative. The clinical course, biological evolution, radiological and histological findings were consistent with cytomegalovirus hepatitis complicated by a partial acute Budd-Chiari syndrome and portal thrombosis. Therapeutic anticoagulation was associated with a slow clinical improvement and partial vascular recanalization. CONCLUSION: We described in details a new association between cytomegalovirus infection and acute venous thrombosis both in the portal vein and in the right hepatic vein, realizing a partial Budd-Chiari syndrome. One should be aware that this rare thrombotic event may be complicated by partial venous outflow block
The effects of Gilles de la Tourette syndrome and other chronic tic disorders on quality of life across the lifespan:a systematic review
Gilles de la Tourette syndrome (GTS) and other chronic tic disorders are neurodevelopmental conditions characterized by the presence of tics and associated behavioral problems. Whilst converging evidence indicates that these conditions can affect patients' quality of life (QoL), the extent of this impairment across the lifespan is not well understood. We conducted a systematic literature review of published QoL studies in GTS and other chronic tic disorders to comprehensively assess the effects of these conditions on QoL in different age groups. We found that QoL can be perceived differently by child and adult patients, especially with regard to the reciprocal contributions of tics and behavioral problems to the different domains of QoL. Specifically, QoL profiles in children often reflect the impact of co-morbid attention-deficit and hyperactivity symptoms, which tend to improve with age, whereas adults' perception of QoL seems to be more strongly affected by the presence of depression and anxiety. Management strategies should take into account differences in age-related QoL needs between children and adults with GTS or other chronic tic disorders
A Novel Hepatitis C Virus Genotyping Method Based on Liquid Microarray
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5′UTR — the most highly conserved region of HCV — and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant™ HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant™ HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant™ HCV assay. Genotype “1” subtypes (1a and 1b) were correctly identified by the Versant™ HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping
Curation of viral genomes: challenges, applications and the way forward
BACKGROUND: Whole genome sequence data is a step towards generating the 'parts list' of life to understand the underlying principles of Biocomplexity. Genome sequencing initiatives of human and model organisms are targeted efforts towards understanding principles of evolution with an application envisaged to improve human health. These efforts culminated in the development of dedicated resources. Whereas a large number of viral genomes have been sequenced by groups or individuals with an interest to study antigenic variation amongst strains and species. These independent efforts enabled viruses to attain the status of 'best-represented taxa' with the highest number of genomes. However, due to lack of concerted efforts, viral genomic sequences merely remained as entries in the public repositories until recently. RESULTS: VirGen is a curated resource of viral genomes and their analyses. Since its first release, it has grown both in terms of coverage of viral families and development of new modules for annotation and analysis. The current release (2.0) includes data for twenty-five families with broad host range as against eight in the first release. The taxonomic description of viruses in VirGen is in accordance with the ICTV nomenclature. A well-characterised strain is identified as a 'representative entry' for every viral species. This non-redundant dataset is used for subsequent annotation and analyses using sequenced-based Bioinformatics approaches. VirGen archives precomputed data on genome and proteome comparisons. A new data module that provides structures of viral proteins available in PDB has been incorporated recently. One of the unique features of VirGen is predicted conformational and sequential epitopes of known antigenic proteins using in-house developed algorithms, a step towards reverse vaccinology. CONCLUSION: Structured organization of genomic data facilitates use of data mining tools, which provides opportunities for knowledge discovery. One of the approaches to achieve this goal is to carry out functional annotations using comparative genomics. VirGen, a comprehensive viral genome resource that serves as an annotation and analysis pipeline has been developed for the curation of public domain viral genome data . Various steps in the curation and annotation of the genomic data and applications of the value-added derived data are substantiated with case studies
Multiple Signals Converge on a Differentiation MAPK Pathway
An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway. Secretion profiling of complementary genomic collections showed that many of the pathways that regulate filamentous growth (RAS, RIM101, OPI1, and RTG) were also required for FG pathway activation. This regulation sensitized the FG pathway to multiple stimuli and synchronized it to the global signaling network. Several of the regulators were required for MSB2 expression, which identifies the MSB2 promoter as a target “hub” where multiple signals converge. Accessibility to the MSB2 promoter was further regulated by the histone deacetylase (HDAC) Rpd3p(L), which positively regulated FG pathway activity and filamentous growth. Our findings provide the first glimpse of a global regulatory hierarchy among the pathways that control filamentous growth. Systems-level integration of signaling circuitry is likely to coordinate other regulatory networks that control complex behaviors
Primary biliary cirrhosis
Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease with a slowly progressive course. Without treatment, most patients eventually develop fibrosis and cirrhosis of the liver and may need liver transplantation in the late stage of disease. PBC primarily affects women (female preponderance 9–10:1) with a prevalence of up to 1 in 1,000 women over 40 years of age. Common symptoms of the disease are fatigue and pruritus, but most patients are asymptomatic at first presentation. The diagnosis is based on sustained elevation of serum markers of cholestasis, i.e., alkaline phosphatase and gamma-glutamyl transferase, and the presence of serum antimitochondrial antibodies directed against the E2 subunit of the pyruvate dehydrogenase complex. Histologically, PBC is characterized by florid bile duct lesions with damage to biliary epithelial cells, an often dense portal inflammatory infiltrate and progressive loss of small intrahepatic bile ducts. Although the insight into pathogenetic aspects of PBC has grown enormously during the recent decade and numerous genetic, environmental, and infectious factors have been disclosed which may contribute to the development of PBC, the precise pathogenesis remains enigmatic. Ursodeoxycholic acid (UDCA) is currently the only FDA-approved medical treatment for PBC. When administered at adequate doses of 13–15 mg/kg/day, up to two out of three patients with PBC may have a normal life expectancy without additional therapeutic measures. The mode of action of UDCA is still under discussion, but stimulation of impaired hepatocellular and cholangiocellular secretion, detoxification of bile, and antiapoptotic effects may represent key mechanisms. One out of three patients does not adequately respond to UDCA therapy and may need additional medical therapy and/or liver transplantation. This review summarizes current knowledge on the clinical, diagnostic, pathogenetic, and therapeutic aspects of PBC
A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction
Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acidinduced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5dihydroxybenzoic acid to a range of 2,5substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholineinduced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF2 and H2DCFDA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RTPCR and western blotting were utilized to measure Akt, eNOS, Nrf2, NQO1 and HO1 expression. Results: Ex vivo endotheliumdependent relaxation was significantly improved by the glycomimetics under palmitateinduced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitateinduced oxidative stress and enhanced NO production. We demonstrate that the protective effects of preincubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROSinduced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease
Science of Active Galactic Nuclei with the GTC and CanariCam
CanariCam is the facility mid-infrared (MIR) instrument for the Gran Telescopio Canarias (GTC), a 10.4m telescope at the Observatorio del Roque de los Muchachos on La Palma. One of the science drivers for Canari-Cam is the study of active galactic nuclei (AGN). We will exploit the instrument's high sensitivity in imaging,spectroscopy, and polarimetry modes to answer fundamental questions of AGN and their host galaxies. Dust in the nucleus of an active galaxy reprocesses the intrinsic radiation of the central engine to emerge in the MIR. Current work demonstrates that the hot dust immediately associated with the AGN, which blocks direct views of the AGN from some lines of sight, is con.ned to small (parsec) scales. Thus, high spatial resolution is essential to probe the "torus" of unified AGN models separate from the host galaxy. CanariCam provides a 0.08- pixel scal e for Nyquist sampling the diffraction-limited point spread function at 8μm, and narrow (0.2-) spectroscopy slits (with R=120-1300). New observations with the GTC/CanariCam will provide key constraints on the physical conditions in the clumpy torus, and we will sensitively determine AGN obscuration as a function of nuclear activity. We will therefore address the fueling process and its relationship to the torus, the interaction with the host galaxy, and dust chemistry. These data will be essential preparation for the next generation of telescopes that will observe the distant universe directly to explore galaxy and black hole formation and evolution, and the GTC/CanariCam system uniquely provides multiple modes to probe AGN