380 research outputs found

    Evolution of a species-specific determinant within human CRM1 that regulates the post-transcriptional phases of HIV-1 replication.

    Get PDF
    The human immunodeficiency virus type-1 (HIV-1) Rev protein regulates the nuclear export of intron-containing viral RNAs by recruiting the CRM1 nuclear export receptor. Here, we employed a combination of functional and phylogenetic analyses to identify and characterize a species-specific determinant within human CRM1 (hCRM1) that largely overcomes established defects in murine cells to the post-transcriptional stages of the HIV-1 life cycle. hCRM1 expression in murine cells promotes the cytoplasmic accumulation of intron-containing viral RNAs, resulting in a substantial stimulation of the net production of infectious HIV-1 particles. These stimulatory effects require a novel surface-exposed element within HEAT repeats 9A and 10A, discrete from the binding cleft previously shown to engage Rev's leucine-rich nuclear export signal. Moreover, we show that this element is a unique feature of higher primate CRM1 proteins, and discuss how this sequence has evolved from a non-functional, ancestral sequence

    Does maternal exposure to an environmental stressor affect offspring response to predators?

    Get PDF
    There is growing recognition of the ways in which maternal effects can influence offspring size, physiological performance, and survival. Additionally, environmental contaminants increasingly act as stressors in maternal environments, possibly leading to maternal effects on subsequent offspring. Thus, it is important to determine whether contaminants and other stressors can contribute to maternal effects, particularly under varied ecological conditions that encompass the range under which offspring develop. We used aquatic mesocosms to determine whether maternal effects of mercury (Hg) exposure shape offspring phenotype in the American toad (Bufo americanus) in the presence or absence of larval predators (dragonfly naiads). We found significant maternal effects of Hg exposure and significant effects of predators on several offspring traits, but there was little evidence that maternal effects altered offspring interactions with predators. Offspring from Hg-exposed mothers were 18% smaller than those of reference mothers. Offspring reared with predators were 23% smaller at metamorphosis than those reared without predators. There was also evidence of reduced larval survival when larvae were reared with predators, but this was independent of maternal effects. Additionally, 5 times more larvae had spinal malformations when reared without predators, suggesting selective predation of malformed larvae by predators. Lastly, we found a significant negative correlation between offspring survival and algal density in mesocosms, indicating a role for top-down effects of predators on periphyton communities. Our results demonstrate that maternal exposure to an environmental stressor can induce phenotypic responses in offspring in a direction similar to that produced by direct exposure of offspring to predators

    Approximating the double-cut-and-join distance between unsigned genomes

    Get PDF
    In this paper we study the problem of sorting unsigned genomes by double-cut-and-join operations, where genomes allow a mix of linear and circular chromosomes to be present. First, we formulate an equivalent optimization problem, called maximum cycle/path decomposition, which is aimed at finding a largest collection of edge-disjoint cycles/AA-paths/AB-paths in a breakpoint graph. Then, we show that the problem of finding a largest collection of edge-disjoint cycles/AA-paths/AB-paths of length no more than l can be reduced to the well-known degree-bounded k-set packing problem with k = 2l. Finally, a polynomial-time approximation algorithm for the problem of sorting unsigned genomes by double-cut-and-join operations is devised, which achieves the approximation ratio for any positive ε. For the restricted variation where each genome contains only one linear chromosome, the approximation ratio can be further improved t

    Children who are both wasted and stunted are also underweight and have a high risk of death: a descriptive epidemiology of multiple anthropometric deficits using data from 51 countries.

    Get PDF
    BACKGROUND: Wasting and stunting are common. They are implicated in the deaths of almost two million children each year and account for over 12% of disability-adjusted life years lost in young children. Wasting and stunting tend to be addressed as separate issues despite evidence of common causality and the fact that children may suffer simultaneously from both conditions (WaSt). Questions remain regarding the risks associated with WaSt, which children are most affected, and how best to reach them. METHODS: A database of cross-sectional survey datasets containing data for almost 1.8 million children was compiled. This was analysed to determine the intersection between sets of wasted, stunted, and underweight children; the association between being wasted and being stunted; the severity of wasting and stunting in WaSt children; the prevalence of WaSt by age and sex, and to identify weight-for-age z-score and mid-upper arm circumference thresholds for detecting cases of WaSt. An additional analysis of the WHO Growth Standards sought the maximum possible weight-for-age z-score for WaSt children. RESULTS: All children who were simultaneously wasted and stunted were also underweight. The maximum possible weight-for-age z-score in these children was below - 2.35. Low WHZ and low HAZ have a joint effect on WAZ which varies with age and sex. WaSt and "multiple anthropometric deficits" (i.e. being simultaneously wasted, stunted, and underweight) are identical conditions. The conditions of being wasted and being stunted are positively associated with each other. WaSt cases have more severe wasting than wasted only cases. WaSt cases have more severe stunting than stunted only cases. WaSt is largely a disease of younger children and of males. Cases of WaSt can be detected with excellent sensitivity and good specificity using weight-for-age. CONCLUSIONS: The category "multiple anthropometric deficits" can be abandoned in favour of WaSt. Therapeutic feeding programs should cover WaSt cases given the high mortality risk associated with this condition. Work on treatment effectiveness, duration of treatment, and relapse after cure for WaSt cases should be undertaken. Routine reporting of the prevalence of WaSt should be encouraged. Further work on the aetiology, prevention, case-finding, and treatment of WaSt cases as well as the extent to which current interventions are reaching WaSt cases is required

    Differential Effects of HIF-1 Inhibition by YC-1 on the Overall Outcome and Blood-Brain Barrier Damage in a Rat Model of Ischemic Stroke

    Get PDF
    Hypoxia-inducible factor 1 (HIF-1) is a master regulator of cellular adaptation to hypoxia and has been suggested as a potent therapeutic target in cerebral ischemia. Here we show in an ischemic stroke model of rats that inhibiting HIF-1 and its downstream genes by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) significantly increases mortality and enlarges infarct volume evaluated by MRI and histological staining. Interestingly, the HIF-1 inhibition remarkably ameliorates ischemia-induced blood-brain barrier (BBB) disruption determined by Evans blue leakage although it does not affect brain edema. The result demonstrates that HIF-1 inhibition has differential effects on ischemic outcomes and BBB permeability. It indicates that HIF-1 may have different functions in different brain cells. Further analyses show that ischemia upregulates HIF-1 and its downstream genes erythropoietin (EPO), vascular endothelial growth factor (VEGF), and glucose transporter (Glut) in neurons and brain endothelial cells and that YC-1 inhibits their expression. We postulate that HIF-1-induced VEGF increases BBB permeability while certain other proteins coded by HIF-1's downstream genes such as epo and glut provide neuroprotection in an ischemic brain. The results indicate that YC-1 lacks the potential as a cerebral ischemic treatment although it confers certain protection to the cerebral vascular system

    The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor microenvironment is composed of tumor cells, fibroblasts, endothelial cells, and infiltrating immune cells. Tumor-associated immune cells may inhibit or promote tumor growth and progression. This study was conducted to determine whether the number and microlocalization of macrophages, mature dendritic cells and cytotoxic T cells in non-small cell lung cancer are associated with patient's survival time.</p> <p>Methods</p> <p>Ninety-nine patients with non-small cell lung cancer (NSCLC) were included in this retrospective study. Paraffin-embedded NSCLC specimens and their clinicopathological data including up to 8-year follow-up information were used. Immunohistochemical staining for CD68 (marker for macrophages), CD83 (marker for mature dendritic cells), and CD8 (marker for cytotoxic T cells) was performed and evaluated in a blinded fashion. The numbers of immune cells in tumor islets and stroma, tumor islets, or tumor stroma were counted under a microscope. Correlation of the cell numbers and patient's survival time was analyzed using the Statistical Package for the Social Sciences (version 13.0).</p> <p>Results</p> <p>The numbers of macrophages, mature dendritic cells and cytotoxic T cells were significantly more in the tumor stroma than in the tumor islets. The number of macrophages in the tumor islets was positively associated with patient's survival time, whereas the number of macrophages in the tumor stroma was negatively associated with patient's survival time in both univariate and multivariate analyses. The number of mature dendritic cells in the tumor islets and stroma, tumor islets only, or tumor stroma only was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets and stroma was positively associated with patient's survival time in a univariate analysis but not in a multivariate analysis. The number of cytotoxic T cells in the tumor islets only or stroma only was not associated with patient's survival time.</p> <p>Conclusions</p> <p>The number of macrophages in the tumor islets or stroma is an independent predictor of survival time in NSCLC patients. Counting macrophages in the tumor islets or stroma is more useful in predicting patient's survival time than counting mature dendritic cells or cytotoxic T cells.</p

    Caspase-2 Mediated Apoptotic and Necrotic Murine Macrophage Cell Death Induced by Rough Brucella abortus

    Get PDF
    Brucella species are Gram-negative, facultative intracellular bacteria that cause zoonotic brucellosis. Survival and replication inside macrophages is critical for establishment of chronic Brucella infection. Virulent smooth B. abortus strain 2308 inhibits programmed macrophage cell death and replicates inside macrophages. Cattle B. abortus vaccine strain RB51 is an attenuated rough, lipopolysaccharide O antigen-deficient mutant derived from smooth strain 2308. B. abortus rough mutant RA1 contains a single wboA gene mutation in strain 2308. Our studies demonstrated that live RB51 and RA1, but not strain 2308 or heat-killed Brucella, induced both apoptotic and necrotic cell death in murine RAW264.7 macrophages and bone marrow derived macrophages. The same phenomenon was also observed in primary mouse peritoneal macrophages from mice immunized intraperitoneally with vaccine strain RB51 using the same dose as regularly performed in protection studies. Programmed macrophage cell death induced by RB51 and RA1 was inhibited by a caspase-2 inhibitor (Z-VDVAD-FMK). Caspase-2 enzyme activation and cleavage were observed at the early infection stage in macrophages infected with RB51 and RA1 but not strain 2308. The inhibition of macrophage cell death promoted the survival of rough Brucella cells inside macrophages. The critical role of caspase-2 in mediating rough B. abortus induced macrophage cell death was confirmed using caspase-2 specific shRNA. The mitochondrial apoptosis pathway was activated in macrophages infected with rough B. abortus as demonstrated by increase in mitochondrial membrane permeability and the release of cytochrome c to cytoplasm in macrophages infected with rough Brucella. These results demonstrate that rough B. abortus strains RB51 and RA1 induce apoptotic and necrotic murine macrophage cell death that is mediated by caspase-2. The biological relevance of Brucella O antigen and caspase-2-mediated macrophage cell death in Brucella pathogenesis and protective Brucella immunity is discussed

    Chronic Respiratory Aeroallergen Exposure in Mice Induces Epithelial-Mesenchymal Transition in the Large Airways

    Get PDF
    Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM) extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1) levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (α-SMA) and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease

    International Variation in Severe Exacerbation Rates in Patients With Severe Asthma.

    Get PDF
    BACKGROUND: Exacerbation frequency strongly influences treatment choices in patients with severe asthma. RESEARCH QUESTION: What is the extent of the variability of exacerbations rate across countries and its implications in disease management? STUDY DESIGN AND METHODS: We retrieved data from the International Severe Asthma Registry, an international observational cohort of patients with a clinical diagnosis of severe asthma. We identified patients ≥ 18 years of age who did not initiate any biologics prior to baseline visit. A severe exacerbation was defined as the use of oral corticosteroids for ≥ 3 days or asthma-related hospitalization/ED visit. A series of negative binomial models were applied to estimate country-specific severe exacerbation rates during 365 days of follow-up, starting from a naïve model with country as the only variable to an adjusted model with country as a random-effect term and patient and disease characteristics as independent variables. RESULTS: The final sample included 7,510 patients from 17 countries (56% from the United States), contributing to 1,939 severe exacerbations (0.27/person-year). There was large between-country variation in observed severe exacerbation rate (minimum, 0.04 [Argentina]; maximum, 0.88 [Saudi Arabia]; interquartile range, 0.13-0.54), which remained substantial after adjusting for patient characteristics and sampling variability (interquartile range, 0.16-0.39). INTERPRETATION: Individuals with similar patient characteristics but coming from different jurisdictions have varied severe exacerbation risks, even after controlling for patient and disease characteristics. This suggests unknown patient factors or system-level variations at play. Disease management guidelines should recognize such between-country variability. Risk prediction models that are calibrated for each jurisdiction will be needed to optimize treatment strategies

    Development of a Quantitative Bead Capture Assay for Soluble IL-7 Receptor Alpha in Human Plasma

    Get PDF
    IL-7 is an essential cytokine in T-cell development and homeostasis. It binds to the IL-7R receptor, a complex of the IL-7Rα (CD127) and common γ (CD132) chains. There is significant interest in evaluating the expression of CD127 on human T-cells as it often decreased in medical conditions leading to lymphopenia. Previous reports showed the usefulness of CD127 as a prognostic marker in viral infections such as HIV, CMV, EBV and HCV. A soluble CD127 (sCD127) is released in plasma and may contribute to disease pathogenesis through its control on IL-7 activities. Measuring sCD127 is important to define its role and may complement existing markers used in lymphopenic disease management. We describe a new quantitative assay for the measurement of sCD127 in plasma and report sCD127 concentrations in healthy adults.We developed a quantitative bead-based sCD127 capture assay. Polyclonal CD127-specific antibodies were chosen for capture and a biotinylated monoclonal anti-CD127 antibody was selected for detection. The assay can detect native sCD127 and recombinant sCD127 which served as the calibrator. The analytical performance of the assay was characterized and the concentration and stability of plasma sCD127 in healthy adults was determined. The assay's range was 3.2–1000 ng/mL. The concentration of plasma sCD127 was 164±104 ng/mL with over a log variation between subjects. Individual sCD127 concentrations remained stable when measured serially during a period of up to one year.This is the first report on the quantification of plasma sCD127 in a population of healthy adults. Soluble CD127 plasma concentrations remained stable over time in a given individual and sCD127 immunoreactivity was resistant to repeated freeze-thaw cycles. This quantitative sCD127 assay is a valuable tool for defining the potential role of sCD127 in lymphopenic diseases
    corecore