337 research outputs found
Graphene for spintronics: giant Rashba splitting due to hybridization with Au
Graphene in spintronics has so far primarily meant spin current leads of high
performance because the intrinsic spin-orbit coupling of its pi-electrons is
very weak. If a large spin-orbit coupling could be created by a proximity
effect, the material could also form active elements of a spintronic device
such as the Das-Datta spin field-effect transistor, however, metal interfaces
often compromise the band dispersion of massless Dirac fermions. Our
measurements show that Au intercalation at the graphene-Ni interface creates a
giant spin-orbit splitting (~100 meV) in the graphene Dirac cone up to the
Fermi energy. Photoelectron spectroscopy reveals hybridization with Au-5d
states as the source for the giant spin-orbit splitting. An ab initio model of
the system shows a Rashba-split dispersion with the analytically predicted
gapless band topology around the Dirac point of graphene and indicates that a
sharp graphene-Au interface at equilibrium distance will account for only ~10
meV spin-orbit splitting. The ab initio calculations suggest an enhancement due
to Au atoms that get closer to the graphene and do not violate the sublattice
symmetry.Comment: 16 pages (3 figures) + supplementary information 16 pages (14
figures
Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background
Cosmology's standard model posits an infinite flat universe forever expanding
under the pressure of dark energy. First-year data from the Wilkinson Microwave
Anisotropy Probe (WMAP) confirm this model to spectacular precision on all but
the largest scales (Bennett {\it et al.}, 2003 ; Spergel {\it et al.}, 2003).
Temperature correlations across the microwave sky match expectations on scales
narrower than , yet vanish on scales wider than .
Researchers are now seeking an explanation of the missing wide-angle
correlations (Contaldi {\it et al.}, 2003 ; Cline {\it et al.}, 2003). One
natural approach questions the underlying geometry of space, namely its
curvature (Efstathiou, 2003) and its topology (Tegmark {\it et al.}, 2003). In
an infinite flat space, waves from the big bang would fill the universe on all
length scales. The observed lack of temperature correlations on scales beyond
means the broadest waves are missing, perhaps because space itself
is not big enough to support them.
Here we present a simple geometrical model of a finite, positively curved
space -- the Poincar\'e dodecahedral space -- which accounts for WMAP's
observations with no fine-tuning required. Circle searching (Cornish, Spergel
and Starkman, 1998) may confirm the model's topological predictions, while
upcoming Planck Surveyor data may confirm its predicted density of . If confirmed, the model will answer the ancient question of
whether space is finite or infinite, while retaining the standard
Friedmann-Lema\^\i{}tre foundation for local physics.Comment: 10 pages, 4 figures. This is a slightly longer version of the paper
published in Nature 425, p. 593, 200
Using spatial analysis to demonstrate the heterogeneity of the cardiovascular drug-prescribing pattern in Taiwan
<p>Abstract</p> <p>Background</p> <p>Geographic Information Systems (GIS) combined with spatial analytical methods could be helpful in examining patterns of drug use. Little attention has been paid to geographic variation of cardiovascular prescription use in Taiwan. The main objective was to use local spatial association statistics to test whether or not the cardiovascular medication-prescribing pattern is homogenous across 352 townships in Taiwan.</p> <p>Methods</p> <p>The statistical methods used were the global measures of Moran's <it>I </it>and Local Indicators of Spatial Association (LISA). While Moran's <it>I </it>provides information on the overall spatial distribution of the data, LISA provides information on types of spatial association at the local level. LISA statistics can also be used to identify influential locations in spatial association analysis. The major classes of prescription cardiovascular drugs were taken from Taiwan's National Health Insurance Research Database (NHIRD), which has a coverage rate of over 97%. The dosage of each prescription was converted into defined daily doses to measure the consumption of each class of drugs. Data were analyzed with ArcGIS and GeoDa at the township level.</p> <p>Results</p> <p>The LISA statistics showed an unusual use of cardiovascular medications in the southern townships with high local variation. Patterns of drug use also showed more low-low spatial clusters (cold spots) than high-high spatial clusters (hot spots), and those low-low associations were clustered in the rural areas.</p> <p>Conclusions</p> <p>The cardiovascular drug prescribing patterns were heterogeneous across Taiwan. In particular, a clear pattern of north-south disparity exists. Such spatial clustering helps prioritize the target areas that require better education concerning drug use.</p
How conservation initiatives go to scale
Although a major portion of the planet’s land and sea is managed to conserve biodiversity, little is known about the extent, speed and patterns of adoption of conservation initiatives. We undertook a quantitative exploration of how area-based conservation initiatives go to scale by analysing the adoption of 22 widely recognized and diverse initiatives from across the globe. We use a standardized approach to compare the potential of different initiatives to reach scale. While our study is not exhaustive, our analyses reveal consistent patterns across a variety of initiatives: adoption of most initiatives (82% of our case studies) started slowly before rapidly going to scale. Consistent with diffusion of innovation theory, most initiatives exhibit slow–fast–slow (that is, sigmoidal) dynamics driven by interactions between existing and potential adopters. However, uptake rates and saturation points vary among the initiatives and across localities. Our models suggest that the uptake of most of our case studies is limited; over half of the initiatives will be taken up by <30% of their potential adopters. We also provide a methodology for quantitatively understanding the process of scaling. Our findings inform us how initiatives scale up to widespread adoption, which will facilitate forecasts of the future level of adoption of initiatives, and benchmark their extent and speed of adoption against those of our case studies
Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery
Background: Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
C2 and CFB Genes in Age-Related Maculopathy and Joint Action with CFH and LOC387715 Genes
Background: Age-related maculopathy (ARM) is a common cause of visual impairment in the elderly populations of industrialized countries and significantly affects the quality of life of those suffering from the disease. Variants within two genes, the complement factor H (CFH) and the poorly characterized LOC387715 (ARMS2), are widely recognized as ARM risk factors. CFH is important in regulation of the alternative complement pathway suggesting this pathway is involved in ARM pathogenesis. Two other complement pathway genes, the closely linked complement component receptor (C2) and complement factor B (CFB), were recently shown to harbor variants associated with ARM. Methods/Principal Findings: We investigated two SNPs in C2 and two in CFB in independent case-control and family cohorts of white subjects and found rs547154, an intronic SNP in C2, to be significantly associated with ARM in both our case-control (P-value 0.00007) and family data (P-value 0.00001). Logistic regression analysis suggested that accounting for the effect at this locus significantly (P-value 0.002) improves the fit of a genetic risk model of CFH and LOC387715 effects only. Modeling with the generalized multifactor dimensionality reduction method showed that adding C2 to the two-factor model of CFH and LOC387715 increases the sensitivity (from 63% to 73%). However, the balanced accuracy increases only from 71% to 72%, and the specificity decreases from 80% to 72%. Conclusions/Significance: C2/CFB significantly influences AMD susceptibility and although accounting for effects at this locus does not dramatically increase the overall accuracy of the genetic risk model, the improvement over the CFH-LOC387715 model is statistically significant. © 2008 Jakobsdottir et al
A Digital Repository and Execution Platform for Interactive Scholarly Publications in Neuroscience
The CARMEN Virtual Laboratory (VL) is a cloud-based platform which allows neuroscientists to store, share, develop, execute, reproduce and publicise their work. This paper describes new functionality in the CARMEN VL: an interactive publications repository. This new facility allows users to link data and software to publications. This enables other users to examine data and software associated with the publication and execute the associated software within the VL using the same data as the authors used in the publication. The cloud-based architecture and SaaS (Software as a Service) framework allows vast data sets to be uploaded and analysed using software services. Thus, this new interactive publications facility allows others to build on research results through reuse. This aligns with recent developments by funding agencies, institutions, and publishers with a move to open access research. Open access provides reproducibility and verification of research resources and results. Publications and their associated data and software will be assured of long-term preservation and curation in the repository. Further, analysing research data and the evaluations described in publications frequently requires a number of execution stages many of which are iterative. The VL provides a scientific workflow environment to combine software services into a processing tree. These workflows can also be associated with publications and executed by users. The VL also provides a secure environment where users can decide the access rights for each resource to ensure copyright and privacy restrictions are met
Splitting or lumping? A conservation dilemma exemplified by the critically endangered Dama Gazelle (Nanger dama)
Managers of threatened species often face the dilemma of whether to keep populations separate to conserve local adaptations and minimize the risk of outbreeding, or whether to manage populations jointly to reduce loss of genetic diversity and minimise inbreeding. In this study we examine genetic relatedness and diversity in three of the five last remaining wild populations of dama gazelle and a number of captive populations, using mtDNA control region and cytochrome b data. Despite the sampled populations belonging to the three putative subspecies, which are delineated according to phenotypes and geographical location, we find limited evidence for phylogeographical structure within the data and no genetic support for the putative subspecies. In the light of these data we discuss the relevance of inbreeding depression, outbreeding depression, adaptive variation, genetic drift, and phenotypic variation to the conservation of the dama gazelle and make some recommendations for its future conservation management. The genetic data suggest that the best conservation approach is to view the dama gazelle as a single species without subspecific divisions
- …